spINAR-package {spINAR} | R Documentation |
(Semi)parametric estimation and bootstrapping of INAR models
Description
Semiparametric and parametric estimation of INAR models including a finite sample refinement for the semiparametric setting, different procedures to bootstrap INAR data and flexible simulation of INAR data.
Semiparametric INAR Model
The package provides a flexible simulation of INAR data by inserting a user-defined
pmf argument in the spinar_sim
function. Using spinar_est
,
it allows for semiparametric estimation of the INAR model along Drost et al. (2009)
and additionally, it includes a small sample refinement spinar_penal
(Faymonville et al., 2022) together with a validation of the upcoming penalization
parameters (spinar_penal_val
). Furthermore, it contains a semiparametric
INAR bootstrap procedure implemented in spinar_boot
(Jentsch and Weiß, 2017).
Parametric INAR Model
In addition to the semiparametric model, the package also allows for parametric simulation
(spinar_sim
), parametric estimation (spinar_est_param
) and
parametric bootstrapping (spinar_boot
) of INAR data.
Author(s)
Maintainer: Maxime Faymonville faymonville@statistik.tu-dortmund.de (ORCID)
Authors:
Javiera Riffo javiera.riffo@tu-dortmund.de (ORCID)
Jonas Rieger rieger@statistik.tu-dortmund.de (ORCID)
Carsten Jentsch jentsch@statistik.tu-dortmund.de (ORCID)
Other contributors:
Christian H. Weiß weissc@hsu-hh.de (ORCID) [contributor]
References
Faymonville, M., Jentsch, C., Weiß, C.H. and Aleksandrov, B. (2022). "Semiparametric Estimation of INAR Models using Roughness Penalization". Statistical Methods & Applications. doi:10.1007/s10260-022-00655-0.
Jentsch, C. and Weiß, C. H. (2017), “Bootstrapping INAR Models”. Bernoulli 25(3), pp. 2359–2408. doi:10.3150/18-BEJ1057.
Drost, F., Van den Akker, R. and Werker, B. (2009), “Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued AR(p) models”. Journal of the Royal Statistical Society. Series B 71(2), pp. 467–485. doi:10.1111/j.1467-9868.2008.00687.x.
See Also
Useful links: