| HSFWM_pred {spFW} | R Documentation | 
Prediction Function for Hierarchical Spatial Finlay-Wilkinson Model
Description
This function considers spatial adjustments.
Usage
HSFWM_pred(Y, VAR, ENV, COOR, VAR2, ENV2, COOR2, save_int = FALSE,
  kin_info = FALSE, A = NULL, inits = NULL, hyper_para = NULL,
  M_iter = 5000, burn_in = 3000, thin = 5, seed = NULL)
Arguments
| Y | A length-N1 numerical response vector from training set | 
| VAR | A length-N1 factor/character vector indicating the genotype information of Y | 
| ENV | A length-N1 factor/character vector indicating the field information of Y | 
| COOR | A N1 by 2 numerical matrix indicating the spatial locations of Y | 
| VAR2 | A length-N2 factor/character vector indicating the genotype information of testing set | 
| ENV2 | A length-N2 factor/character vector indicating the field information of of testing set | 
| COOR2 | A N2 by 2 numerical matrix indicating the spatial locations of testing set | 
| save_int | A logical parameter controling whether to save prediction credible intervals | 
| kin_info | A logical parameter controling if to use kinship matrix | 
| A | kinship matrix, give value only if kin_info = TRUE | 
| inits | initial values, default is given | 
| hyper_para | hyper-parameter values, default is given | 
| M_iter | Total iteration number | 
| burn_in | Burn in number | 
| thin | Thinning value | 
| seed | Random seed value | 
Value
Mean prediction values and/or prediction intervals
Examples
library(spFW)
# load and split data
data(spFW_example_data)
idx_pred <- sample(125, 25)
Y0 <- spFW_example_data$yield
VAR0 <- spFW_example_data$geno
ENV0 <- spFW_example_data$loc
COOR0 <- spFW_example_data[,c(4,5)]
Y1 <- Y0[-idx_pred]
Y2 <- Y0[idx_pred]
VAR1 <- VAR0[-idx_pred]
VAR2 <- VAR0[idx_pred]
ENV1 <- ENV0[-idx_pred]
ENV2 <- ENV0[idx_pred]
COOR1 <- COOR0[-idx_pred,]
COOR2 <- COOR0[idx_pred,]
order_y <- order(Y2)
# run model
pred1 <- HSFWM_pred(Y1, VAR1, ENV1, COOR1, VAR2, ENV2, COOR2, save_int = TRUE,
                    M_iter = 1000, burn_in = 500, thin = 5)
# visualize prediction results
plot(1:25, pred1$PY[order_y], ylim = c(50, 250), pch = 15, col = "red",
     xlab = "Plant ID for Prediction", ylab = "Yield",
     main = "95% Prediction Intervals with Predicted Mean (Red) Versus True Yield (Blue)")
points(1:25, Y2[order_y], col = "blue")
for (i in 1:25){
  lines(x = c(i,i), y = c(pred1$PY_CI[,order_y][1,i], pred1$PY_CI[,order_y][4,i]))
}