anovaDDP {spBayesSurv} | R Documentation |
Bayesian Nonparametric Survival Model
Description
This function fits a Bayesian Nonparametric model (De Iorio et al., 2009) for non-spatial right censored time-to-event data. Note that the notations are different with those presented in the original paper; see Zhou, Hanson and Zhang (2018) for new examples.
Usage
anovaDDP(formula, data, na.action, prediction=NULL,
mcmc=list(nburn=3000, nsave=2000, nskip=0, ndisplay=500),
prior=NULL, state=NULL, scale.designX=TRUE)
Arguments
formula |
a formula expression with the response returned by the |
data |
a data frame in which to interpret the variables named in the |
na.action |
a missing-data filter function, applied to the |
prediction |
a list giving the information used to obtain conditional inferences. The list includes the following element: |
mcmc |
a list giving the MCMC parameters. The list must include the following elements: |
prior |
a list giving the prior information. See Zhou, Hanson and Zhang (2018) for more detailed hyperprior specifications. |
state |
a list giving the current value of the parameters. This list is used if the current analysis is the continuation of a previous analysis. |
scale.designX |
flag to indicate wheter the design matrix X will be centered by column means and scaled by column standard deviations, where |
Details
This function fits a Bayesian Nonparametric model (De Iorio et al., 2009) for non-spatial right censored time-to-event data. Note that the notations are different with those presented in the original paper; see Zhou, Hanson and Zhang (2018) for new examples.
Value
The anovaDDP
object is a list containing at least the following components:
n |
the number of row observations used in fitting the model |
p |
the number of columns in the model matrix |
Surv |
the |
X.scaled |
the n by p scaled design matrix |
X |
the n by p orginal design matrix |
beta |
the p+1 by N by nsave array of posterior samples for the coefficients |
sigma2 |
the N by nsave matrix of posterior samples for sigma2 involved in the DDP. |
w |
the N by nsave matrix of posterior samples for weights involved in the DDP. |
Tpred |
the npred by nsave predicted survival times for covariates specified in the argument |
Author(s)
Haiming Zhou and Timothy Hanson
References
Zhou, H., Hanson, T., and Zhang, J. (2020). spBayesSurv: Fitting Bayesian Spatial Survival Models Using R. Journal of Statistical Software, 92(9): 1-33.
Zhou, H., Hanson, T., and Knapp, R. (2015). Marginal Bayesian nonparametric model for time to disease arrival of threatened amphibian populations. Biometrics, 71(4): 1101-1110.
De Iorio, M., Johnson, W. O., Mueller, P., and Rosner, G. L. (2009). Bayesian nonparametric nonproportional hazards survival modeling. Biometrics, 65(3): 762-771.
See Also
Examples
###############################################################
# A simulated data: mixture of two normals
###############################################################
rm(list=ls())
library(survival)
library(spBayesSurv)
library(coda)
## True parameters
betaT = cbind(c(3.5, 0.5), c(2.5, -1));
wT = c(0.4, 0.6);
sig2T = c(1^2, 0.5^2);
n=100;
## The Survival function for log survival times:
fiofy = function(y, xi, w=wT){
nw = length(w);
ny = length(y);
res = matrix(0, ny, nw);
Xi = c(1,xi);
for (k in 1:nw){
res[,k] = w[k]*dnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
}
apply(res, 1, sum)
}
fioft = function(t, xi, w=wT) fiofy(log(t), xi, w)/t;
Fiofy = function(y, xi, w=wT){
nw = length(w);
ny = length(y);
res = matrix(0, ny, nw);
Xi = c(1,xi);
for (k in 1:nw){
res[,k] = w[k]*pnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
}
apply(res, 1, sum)
}
Fioft = function(t, xi, w=wT) Fiofy(log(t), xi, w);
## The inverse for Fioft
Finv = function(u, x) uniroot(function (y) Fiofy(y,x)-u, lower=-250,
upper=250, extendInt ="yes", tol=1e-6)$root
## generate x
x1 = runif(n,-1.5,1.5); X = cbind(x1);
## generate survival times
u = runif(n);
tT = rep(0, n);
for (i in 1:n){
tT[i] = exp(Finv(u[i], X[i,]));
}
### ----------- right-censored -------------###
t_obs=tT
Centime = runif(n, 20, 200);
delta = (tT<=Centime) +0 ;
length(which(delta==0))/n; # censoring rate
rcen = which(delta==0);
t_obs[rcen] = Centime[rcen]; ## observed time
## make a data frame
d = data.frame(tobs=t_obs, x1=x1, delta=delta, tT=tT);
table(d$delta)/n;
###############################################################
# Independent DDP: Bayesian Nonparametric Survival Model
###############################################################
# MCMC parameters
nburn=500; nsave=500; nskip=0;
# Note larger nburn, nsave and nskip should be used in practice.
mcmc=list(nburn=nburn, nsave=nsave, nskip=nskip, ndisplay=1000);
prior = list(N=10, a0=2, b0=2);
# Fit the Cox PH model
res1 = anovaDDP(formula = Surv(tobs, delta)~x1, data=d,
prior=prior, mcmc=mcmc);
## LPML
LPML = sum(log(res1$cpo)); LPML;
## Number of non-negligible components
quantile(colSums(res1$w>0.05))
############################################
## Curves
############################################
ygrid = seq(0,6.0,length=100); tgrid = exp(ygrid);
xpred = data.frame(x1=c(-1, 1))
plot(res1, xnewdata=xpred, tgrid=tgrid);