spRecover {spBayes} | R Documentation |
Function for recovering regression coefficients and spatial
random effects for spLM
, spMvLM
,
spMisalignLM
, spSVC
using composition sampling
Description
Function for recovering regression coefficients and spatial random
effects for spLM
, spMvLM
, and
spMisalignLM
using composition sampling.
Usage
spRecover(sp.obj, get.beta=TRUE, get.w=TRUE, start=1, end, thin=1,
verbose=TRUE, n.report=100, n.omp.threads=1, ...)
Arguments
sp.obj |
an object returned by |
get.beta |
if |
get.w |
if |
start |
specifies the first sample included in the composition sampling. |
end |
specifies the last sample included in the composition.
The default is to use all posterior samples in |
thin |
a sample thinning factor. The default of 1 considers all
samples between |
verbose |
if |
n.report |
the interval to report sampling progress. |
n.omp.threads |
a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we
recommend setting |
... |
currently no additional arguments. |
Value
The input sp.obj
with posterior samples of regression coefficients and/or spatial random effects appended.
tags:
p.theta.recover.samples |
those |
p.beta.recover.samples |
a |
p.w.recover.samples |
a For |
p.w.recover.samples.list |
only returned for
|
p.tilde.beta.recover.samples.list |
only returned for
|
p.y.samples |
only returned for
|
Author(s)
Andrew O. Finley finleya@msu.edu,
Sudipto Banerjee sudipto@ucla.edu
References
Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton, FL.
Finley, A.O., S. Banerjee, and A.E. Gelfand. (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software, 63:1–28. https://www.jstatsoft.org/article/view/v063i13.
Finley, A.O. and S. Banerjee (2019) Bayesian spatially varying coefficient models in the spBayes R package. https://arxiv.org/abs/1903.03028.
Examples
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
n <- 50
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 10
tau.sq <- 0.01
phi <- 3/0.5
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
n.samples <- 1000
starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
priors <- list("beta.Flat", "phi.Unif"=c(3/1, 3/0.1),
"sigma.sq.IG"=c(2, 5), "tau.sq.IG"=c(2, 0.01))
cov.model <- "exponential"
m.1 <- spLM(y~X-1, coords=coords, starting=starting, tuning=tuning,
priors=priors, cov.model=cov.model, n.samples=n.samples)
m.1 <- spRecover(m.1, start=0.5*n.samples, thin=2)
summary(window(m.1$p.beta.recover.samples))
w.hat <- apply(m.1$p.w.recover.samples, 1, mean)
plot(w, w.hat, xlab="Observed w", ylab="Fitted w")
## End(Not run)