| spRecover {spBayes} | R Documentation |
Function for recovering regression coefficients and spatial
random effects for spLM, spMvLM,
spMisalignLM, spSVC using composition sampling
Description
Function for recovering regression coefficients and spatial random
effects for spLM, spMvLM, and
spMisalignLM using composition sampling.
Usage
spRecover(sp.obj, get.beta=TRUE, get.w=TRUE, start=1, end, thin=1,
verbose=TRUE, n.report=100, n.omp.threads=1, ...)
Arguments
sp.obj |
an object returned by |
get.beta |
if |
get.w |
if |
start |
specifies the first sample included in the composition sampling. |
end |
specifies the last sample included in the composition.
The default is to use all posterior samples in |
thin |
a sample thinning factor. The default of 1 considers all
samples between |
verbose |
if |
n.report |
the interval to report sampling progress. |
n.omp.threads |
a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we
recommend setting |
... |
currently no additional arguments. |
Value
The input sp.obj with posterior samples of regression coefficients and/or spatial random effects appended.
tags:
p.theta.recover.samples |
those |
p.beta.recover.samples |
a |
p.w.recover.samples |
a For |
p.w.recover.samples.list |
only returned for
|
p.tilde.beta.recover.samples.list |
only returned for
|
p.y.samples |
only returned for
|
Author(s)
Andrew O. Finley finleya@msu.edu,
Sudipto Banerjee sudipto@ucla.edu
References
Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton, FL.
Finley, A.O., S. Banerjee, and A.E. Gelfand. (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software, 63:1–28. https://www.jstatsoft.org/article/view/v063i13.
Finley, A.O. and S. Banerjee (2019) Bayesian spatially varying coefficient models in the spBayes R package. https://arxiv.org/abs/1903.03028.
Examples
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
n <- 50
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 10
tau.sq <- 0.01
phi <- 3/0.5
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
n.samples <- 1000
starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
priors <- list("beta.Flat", "phi.Unif"=c(3/1, 3/0.1),
"sigma.sq.IG"=c(2, 5), "tau.sq.IG"=c(2, 0.01))
cov.model <- "exponential"
m.1 <- spLM(y~X-1, coords=coords, starting=starting, tuning=tuning,
priors=priors, cov.model=cov.model, n.samples=n.samples)
m.1 <- spRecover(m.1, start=0.5*n.samples, thin=2)
summary(window(m.1$p.beta.recover.samples))
w.hat <- apply(m.1$p.w.recover.samples, 1, mean)
plot(w, w.hat, xlab="Observed w", ylab="Fitted w")
## End(Not run)