spMisalignLM {spBayes} | R Documentation |
Function for fitting multivariate Bayesian spatial regression models to misaligned data
Description
The function spMisalignLM
fits Gaussian multivariate Bayesian
spatial regression models to misaligned data.
Usage
spMisalignLM(formula, data = parent.frame(), coords,
starting, tuning, priors, cov.model,
amcmc, n.samples, verbose=TRUE, n.report=100, ...)
Arguments
formula |
a list of |
data |
an optional data frame containing the variables in the
model. If not found in |
coords |
a list of |
starting |
a list with tags corresponding to
|
tuning |
a list with tags |
priors |
a list with tags |
cov.model |
a quoted keyword that specifies the covariance
function used to model the spatial dependence structure among the
observations. Supported covariance model key words are:
|
amcmc |
a list with tags |
n.samples |
the number of MCMC iterations. This argument is
ignored if |
verbose |
if |
n.report |
the interval to report Metropolis acceptance and MCMC progress. |
... |
currently no additional arguments. |
Details
Model parameters can be fixed at their starting
values by setting their
tuning
values to zero.
Value
An object of class spMisalignLM
, which is a list with the following
tags:
p.theta.samples |
a |
acceptance |
the Metropolis sampling
acceptance percent. Reported at |
The return object might include additional data used for subsequent prediction and/or model fit evaluation.
Author(s)
Andrew O. Finley finleya@msu.edu,
Sudipto Banerjee baner009@umn.edu
References
Banerjee, S., A.E. Gelfand, A.O. Finley, and H. Sang. (2008) Gaussian Predictive Process Models for Large Spatial Datasets. Journal of the Royal Statistical Society Series B, 70:825–848.
Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton, Fla.
Finley, A.O., S. Banerjee, and B.D. Cook. (2014) Bayesian hierarchical models for spatially misaligned data. Methods in Ecology and Evolution, 5:514–523.
Finley, A.O., H. Sang, S. Banerjee, and A.E. Gelfand. (2009) Improving the performance of predictive process modeling for large datasets. Computational Statistics and Data Analysis, 53:2873–2884.
Finley, A.O., S. Banerjee, A.R. Ek, and R.E. McRoberts. (2008) Bayesian multivariate process modeling for prediction of forest attributes. Journal of Agricultural, Biological, and Environmental Statistics, 13:60–83.
See Also
Examples
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p)))){stop("Dimension problem!")}
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
##generate some data
n <- 100 ##number of locations
q <- 3 ##number of outcomes at each location
nltr <- q*(q+1)/2 ##number of triangular elements in the cross-covariance matrix
coords <- cbind(runif(n,0,1), runif(n,0,1))
##parameters for generating a multivariate spatial GP covariance matrix
theta <- rep(3/0.5,q) ##spatial decay
A <- matrix(0,q,q)
A[lower.tri(A,TRUE)] <- c(1,1,-1,1,0.5,0.25)
K <- A%*%t(A)
K ##spatial cross-covariance
cov2cor(K) ##spatial cross-correlation
C <- mkSpCov(coords, K, diag(0,q), theta, cov.model="exponential")
w <- rmvn(1, rep(0,nrow(C)), C) ##spatial random effects
w.a <- w[seq(1,length(w),q)]
w.b <- w[seq(2,length(w),q)]
w.c <- w[seq(3,length(w),q)]
##covariate portion of the mean
x.a <- cbind(1, rnorm(n))
x.b <- cbind(1, rnorm(n))
x.c <- cbind(1, rnorm(n))
x <- mkMvX(list(x.a, x.b, x.c))
B.1 <- c(1,-1)
B.2 <- c(-1,1)
B.3 <- c(-1,-1)
B <- c(B.1, B.2, B.3)
Psi <- c(0.1, 0.1, 0.1) ##non-spatial residual variance, i.e., nugget
y <- rnorm(n*q, x%*%B+w, rep(sqrt(Psi),n))
y.a <- y[seq(1,length(y),q)]
y.b <- y[seq(2,length(y),q)]
y.c <- y[seq(3,length(y),q)]
##subsample to make spatially misaligned data
sub.1 <- 1:50
y.1 <- y.a[sub.1]
w.1 <- w.a[sub.1]
coords.1 <- coords[sub.1,]
x.1 <- x.a[sub.1,]
sub.2 <- 25:75
y.2 <- y.b[sub.2]
w.2 <- w.b[sub.2]
coords.2 <- coords[sub.2,]
x.2 <- x.b[sub.2,]
sub.3 <- 50:100
y.3 <- y.c[sub.3]
w.3 <- w.c[sub.3]
coords.3 <- coords[sub.3,]
x.3 <- x.c[sub.3,]
##call spMisalignLM
q <- 3
A.starting <- diag(1,q)[lower.tri(diag(1,q), TRUE)]
n.samples <- 5000
starting <- list("phi"=rep(3/0.5,q), "A"=A.starting, "Psi"=rep(1,q))
tuning <- list("phi"=rep(0.5,q), "A"=rep(0.01,length(A.starting)), "Psi"=rep(0.1,q))
priors <- list("phi.Unif"=list(rep(3/0.75,q), rep(3/0.25,q)),
"K.IW"=list(q+1, diag(0.1,q)), "Psi.ig"=list(rep(2,q), rep(0.1,q)))
m.1 <- spMisalignLM(list(y.1~x.1-1, y.2~x.2-1, y.3~x.3-1),
coords=list(coords.1, coords.2, coords.3),
starting=starting, tuning=tuning, priors=priors,
n.samples=n.samples, cov.model="exponential", n.report=100)
burn.in <- floor(0.75*n.samples)
plot(m.1$p.theta.samples, density=FALSE)
##recover regression coefficients and random effects
m.1 <- spRecover(m.1, start=burn.in)
round(summary(m.1$p.theta.recover.samples)$quantiles[,c(3,1,5)],2)
round(summary(m.1$p.beta.recover.samples)$quantiles[,c(3,1,5)],2)
##predict for all locations, i.e., observed and not observed
out <- spPredict(m.1, start=burn.in, thin=10, pred.covars=list(x.a, x.b,
x.c),
pred.coords=list(coords, coords, coords))
##summary and check
quants <- function(x){quantile(x, prob=c(0.5,0.025,0.975))}
y.hat <- apply(out$p.y.predictive.samples, 1, quants)
##unstack and plot
y.a.hat <- y.hat[,1:n]
y.b.hat <- y.hat[,(n+1):(2*n)]
y.c.hat <- y.hat[,(2*n+1):(3*n)]
par(mfrow=c(1,3))
plot(y.a, y.a.hat[1,], xlab="Observed y.a", ylab="Fitted & predicted y.a",
xlim=range(y), ylim=range(y.hat), main="")
arrows(y.a[-sub.1], y.a.hat[1,-sub.1], y.a[-sub.1], y.a.hat[2,-sub.1], length=0.02, angle=90)
arrows(y.a[-sub.1], y.a.hat[1,-sub.1], y.a[-sub.1], y.a.hat[3,-sub.1], length=0.02, angle=90)
lines(range(y.a), range(y.a))
plot(y.b, y.b.hat[1,], xlab="Observed y.b", ylab="Fitted & predicted y.b",
xlim=range(y), ylim=range(y.hat), main="")
arrows(y.b[-sub.2], y.b.hat[1,-sub.2], y.b[-sub.2], y.b.hat[2,-sub.2], length=0.02, angle=90)
arrows(y.b[-sub.2], y.b.hat[1,-sub.2], y.b[-sub.2], y.b.hat[3,-sub.2], length=0.02, angle=90)
lines(range(y.b), range(y.b))
plot(y.c, y.c.hat[1,], xlab="Observed y.c", ylab="Fitted & predicted y.c",
xlim=range(y), ylim=range(y.hat), main="")
arrows(y.c[-sub.3], y.c.hat[1,-sub.3], y.c[-sub.3], y.c.hat[2,-sub.3], length=0.02, angle=90)
arrows(y.c[-sub.3], y.c.hat[1,-sub.3], y.c[-sub.3], y.c.hat[3,-sub.3], length=0.02, angle=90)
lines(range(y.c), range(y.c))
## End(Not run)