| bayesLMConjugate {spBayes} | R Documentation | 
Simple Bayesian linear model via the Normal/inverse-Gamma conjugate
Description
Given an lm object, the bayesLMConjugate function fits a
simple Bayesian linear model with Normal and inverse-Gamma priors.  
Usage
  bayesLMConjugate(formula, data = parent.frame(), n.samples,
                     beta.prior.mean, beta.prior.precision,
                     prior.shape, prior.rate, ...)
Arguments
formula | 
 for a univariate model, this is a symbolic description of the regression model to be fit. See example below.  | 
data | 
 an optional data frame containing the variables in the
model. If not found in data, the variables are taken from
  | 
n.samples | 
 the number of posterior samples to collect.  | 
beta.prior.mean | 
 
  | 
beta.prior.precision | 
 
  | 
prior.shape | 
 
  | 
prior.rate | 
 
  | 
... | 
 currently no additional arguments.  | 
Value
An object of class bayesLMConjugate, which is a list with at
least the following tag:
p.beta.tauSq.samples | 
 a   | 
Author(s)
Sudipto Banerjee sudiptob@biostat.umn.edu, 
Andrew O. Finley finleya@msu.edu
Examples
## Not run: 
data(FORMGMT.dat)
n <- nrow(FORMGMT.dat)
p <- 7 ##an intercept and six covariates
n.samples <- 500
## Below we demonstrate the conjugate function in the special case
## with improper priors. The results are the same as for the above,
## up to MC error. 
beta.prior.mean <- rep(0, times=p)
beta.prior.precision <- matrix(0, nrow=p, ncol=p)
prior.shape <- -p/2
prior.rate <- 0
m.1 <-
  bayesLMConjugate(Y ~ X1+X2+X3+X4+X5+X6, data = FORMGMT.dat,
                     n.samples, beta.prior.mean,
                     beta.prior.precision,
                     prior.shape, prior.rate)
summary(m.1$p.beta.tauSq.samples)
## End(Not run)