predict.sfMsNMix {spAbundance} | R Documentation |
Function for prediction at new locations for spatial factor multi-species N-mixture models
Description
The function predict
collects posterior predictive samples for a set of new locations given an object of class 'sfMsNMix'. Prediction is possible for both the latent abundance state as well as detection.
Usage
## S3 method for class 'sfMsNMix'
predict(object, X.0, coords.0, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'abundance',
include.sp = TRUE, ...)
Arguments
object |
an object of class sfMsNMix |
X.0 |
the design matrix of covariates at the prediction locations. This should include a column of 1s for the intercept if an intercept is included in the model. If random effects are included in the abundance (or detection if |
coords.0 |
the spatial coordinates corresponding to |
n.omp.threads |
a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we recommend setting
|
verbose |
if |
n.report |
the interval to report sampling progress. |
ignore.RE |
a logical value indicating whether to include unstructured random effects for prediction. If TRUE, random effects will be ignored and prediction will only use the fixed effects. If FALSE, random effects will be included in the prediction for both observed and unobserved levels of the random effect. |
type |
a quoted keyword indicating what type of prediction to produce. Valid keywords are 'abundance' to predict expected abundance and latent abundance values (this is the default), or 'detection' to predict detection probability given new values of detection covariates. |
include.sp |
a logical value used to indicate whether spatial random effects should be included in the predictions. By default, this is set to |
... |
currently no additional arguments |
Value
A list object of class predict.sfMsNMix
. When type = 'abundance'
, the list consists of:
mu.0.samples |
a three-dimensional array of posterior predictive samples for the
expected abundance values. Note these will be per unit area if an offset was used when
fitting the model with |
N.0.samples |
a three-dimensional array of posterior predictive samples for the
latent abundance values. These will be in the same units as |
w.0.samples |
a three-dimensional array of posterior predictive samples for the spatial latent factors. |
When type = 'detection'
, the list consists of:
p.0.samples |
a three-dimensional array of posterior predictive samples for the detection probability values. |
The return object will include additional objects used for standard extractor functions.
Note
When ignore.RE = FALSE
, both sampled levels and non-sampled levels of random effects are supported for prediction. For sampled levels, the posterior distribution for the random effect corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.
Author(s)
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Examples
set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
n.sp <- 6
# Community-level covariate effects
# Abundance
beta.mean <- c(0.2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {
beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
family <- 'Poisson'
n.factors <- 3
phi <- runif(n.factors, 3 / 1, 3 / .1)
dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp,
beta = beta, alpha = alpha, sp = TRUE,
family = 'Poisson', factor.model = TRUE,
n.factors = n.factors, phi = phi, cov.model = 'exponential')
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Abundance covariates
X <- dat$X[-pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Coordinates
coords <- dat$coords[-pred.indx, ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
mu.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx, ]
# Package all data into a list
abund.covs <- X[, 2, drop = FALSE]
colnames(abund.covs) <- c('abund.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])
data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)
# Initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / 1, 3 / .1))
# Initial values
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
phi = 3 / .5,
tau.sq.beta = 1,
tau.sq.alpha = 1,
N = apply(y, c(1, 2), max, na.rm = TRUE))
# Tuning values
tuning <- list(beta = 0.3, alpha = 0.3, lambda = 0.5, w = 0.5, phi = 1.5)
n.batch <- 4
batch.length <- 25
accept.rate <- 0.43
out <- sfMsNMix(abund.formula = ~ abund.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
family = 'Poisson',
n.factors = n.factors,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = 'exponential',
n.neighbors = 5,
tuning = tuning,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1)
summary(out, level = 'community')
# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0)
str(out.pred)