cmatbrcd.mae {soptdmaeA} | R Documentation |
Computes the treatment information matrix
Description
Computes the information matrix (C-matrix) for treatment effects under either the linear fixed effects model or the linear mixed effects model setting for a given block or row-column design.
Usage
cmatbrcd.mae(trt.N, blk.N, theta, des, dtype)
Arguments
trt.N |
integer, specifying number of treatments |
blk.N |
integer, specifying number of arrays (blocks or columns) |
theta |
numeric, representing a function of the ratio of random array variance and random error variance. It takes any value between 0 and 1, inclusive. |
des |
matrix, a |
dtype |
character, specifying the design type. For block designs, |
Value
Returns a v x v
treatment information matrix (C-matrix).
Author(s)
Dibaba Bayisa Gemechu, Legesse Kassa Debusho, and Linda Haines
References
Debusho, L. K., Gemechu, D. B., and Haines, L. M. (2016). Algorithmic construction of optimal block designs for two-colour cDNA microarray experiments using the linear mixed model. Under review.
Gemechu D. B., Debusho L. K. and Haines L. M. (2014). A-optimal designs for two-colour cDNA microarray experiments using the linear mixed effects model. Peer-reviewed Proceedings of the Annual Conference of the South African Statistical Association for 2014 (SASA 2014), Rhodes University, Grahamstown, South Africa. pp 33-40, ISBN: 978-1-86822-659-7.
See Also
Examples
##Information matrix
trt.N <- 4
blk.N <- 4
theta <- 0.3
dsgn <- rbind(1:4,c(2:4,1))
dtype <- "rcd"
cmatbrcd.mae(trt.N = 4, blk.N = 4, theta = 0.2, des = dsgn, dtype = "rcd")