llwrPTF {soilphysics} | R Documentation |
Least Limiting Water Range (LLWR) Using Pedo-Transfer Functions
Description
It calculates Least Limiting Water Range (LLWR) using pedo-transfer functions in according to Silva \& Kay (1997) and Silva et al. (2008), for Canadian and Brazilian soils, respectively.
Usage
llwrPTF(air, critical.PR, h.FC, h.WP, p.density, Bd, clay.content, org.carbon = NULL)
Arguments
air |
the value of the limiting volumetric air content, |
critical.PR |
the value of the critical soil penetration resistance, MPa |
h.FC |
the value of matric suction at the field capacity, hPa |
h.WP |
the value of matric suction at the wilting point, hPa |
p.density |
the value of the soil particle density, |
Bd |
a numeric vector containing values of dry bulk density, |
clay.content |
a numeric vector containing values of clay content to each bulk density, |
org.carbon |
a numeric vector containing values of organic carbon to each bulk density, |
Details
Note that org.carbon is only required for Canadian soil. If it is not passed, LLWR for Canadian soil is calculated with 2\%
of organic carbon.
Value
A list of
LLWR.B |
LLWR for Brazilian soils |
LLWR.C |
LLWR for Canadian soils |
Author(s)
Renato Paiva de Lima <renato_agro_@hotmail.com>
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Alvaro Pires da Silva <apisilva@usp.br>
References
Keller, T; Silva, A.P.; Tormena, C.A.; Giarola, N.B.F., Cavalieri, K.M.V., Stettler, M.; Arvidsson, J. 2015. SoilFlex-LLWR: linking a soil compaction model with the least limiting water range concept. Soil Use and Management, 31:321-329.
Silva, A.P.; Kay, B.D. 1997. Estimating the least limiting water range of soil from properties and management. Soil Science Society of America Journal, 61:877-883.
Silva, A.P., Kay, B.D.; Perfect, E. 1994. Characterization of the least limiting water range. Soil Science Society of America Journal, 61:877-883.
Silva, A.P., Tormena, C.A., Jonez, F.; Imhoff, S. 2008. Pedotransfer functions for the soil water retention and soil resistance to penetration curves. Revista Brasileira de Ciencia do Solo, 32:1-10.
Examples
# EXEMPLE 1 (for Brazilian Soils)
llwrPTF(air=0.1,critical.PR=2, h.FC=100, h.WP=15000,p.density=2.65,
Bd=c(1.2,1.3,1.4,1.5,1.35),clay.content=c(30,30,35,38,40))
# EXEMPLE 2 (for Canadian Soils)
llwrPTF(air=0.1,critical.PR=2, h.FC=100, h.WP=15000,p.density=2.65,
Bd=c(1.2,1.3,1.4),clay.content=c(30,30,30), org.carbon=c(1.3,1.5,2))
# EXEMPLE 3 (combining it with soil stress)
stress <- stressTraffic(inflation.pressure=200,
recommended.pressure=200,
tyre.diameter=1.8,
tyre.width=0.4,
wheel.load=4000,
conc.factor=c(4,5,5,5,5,5),
layers=c(0.05,0.1,0.3,0.5,0.7,1),
plot.contact.area = FALSE)
stress.p <- stress$Stress$sigma_mean
layers <- stress$Stress$Layers
n <- length(layers)
def <- soilDeformation(stress = stress.p,
p.density = rep(2.67,n),
iBD = rep(1.55,n),
N = rep(1.9392,n),
CI = rep(0.06037,n),
k = rep(0.00608,n),
k2 = rep(0.01916,n),
m = rep(1.3,n),graph=TRUE,ylim=c(1.4,1.8))
# Grapth LLWR, considering Brazilian soils
plot(x = 1, y = 1,
xlim=c(0,0.2),ylim=c(1,0),xaxt = "n",
ylab = "Soil Depth",xlab ="", type="l", main="")
axis(3)
mtext("LLWR",side=3,line=2.5)
i.LLWR <- llwrPTF(air=0.1,critical.PR=2, h.FC=100,
h.WP=15000,p.density=2.65,
Bd=def$iBD,clay.content=rep(20,n))
f.LLWR <- llwrPTF(air=0.1,critical.PR=2, h.FC=100,
h.WP=15000,p.density=2.65,
Bd=def$fBD,clay.content=rep(20,n))
points(x=i.LLWR$LLWR.B, y=layers, type="l"); points(x=i.LLWR$LLWR.B, y=layers,pch=15)
points(x=f.LLWR$LLWR.B, y=layers, type="l", col=2); points(x=f.LLWR$LLWR.B, y=layers,pch=15, col=2)
# End (not run)