Matrix Completion via Iterative Soft-Thresholded SVD


[Up] [Top]

Documentation for package ‘softImpute’ version 1.4-1

Help Pages

%*%-method Class '"SparseplusLowRank"'
as.matrix-method Class '"Incomplete"'
as.matrix-method Class '"SparseplusLowRank"'
biScale standardize a matrix to have optionally row means zero and variances one, and/or column means zero and variances one.
coerce-method Class '"Incomplete"'
coerce-method create a matrix of class 'Incomplete'
colMeans-method Class '"SparseplusLowRank"'
colSums-method Class '"SparseplusLowRank"'
complete make predictions from an svd object
complete-method make predictions from an svd object
deBias Recompute the '$d' component of a '"softImpute"' object through regression.
dim-method Class '"SparseplusLowRank"'
impute make predictions from an svd object
Incomplete create a matrix of class 'Incomplete'
Incomplete-class Class '"Incomplete"'
lambda0 compute the smallest value for 'lambda' such that 'softImpute(x,lambda)' returns the zero solution.
lambda0-method compute the smallest value for 'lambda' such that 'softImpute(x,lambda)' returns the zero solution.
norm-method Class '"SparseplusLowRank"'
rowMeans-method Class '"SparseplusLowRank"'
rowSums-method Class '"SparseplusLowRank"'
softImpute impute missing values for a matrix via nuclear-norm regularization.
SparseplusLowRank-class Class '"SparseplusLowRank"'
splr create a 'SparseplusLowRank' object
svd.als compute a low rank soft-thresholded svd by alternating orthogonal ridge regression
svd.als-method compute a low rank soft-thresholded svd by alternating orthogonal ridge regression