affineTransSECdistr {sn} | R Documentation |
Affine transformations and marginals of a skew-elliptical distribution
Description
Given a multivariate random variable Y
with skew-elliptical
(SEC) distribution, compute the distribution
of a (possibly multivariate) marginal or the distribution
of an affine transformation a + A^{\top}Y
.
Usage
affineTransSECdistr(object, a, A, name, compNames, drop=TRUE)
marginalSECdistr(object, comp, name, drop=TRUE)
Arguments
object |
an object of class |
a |
a numeric vector with the length |
A |
a full-rank matrix with |
name |
an optional character string representing the name of the outcome distribution; if missing, one such string is constructed. |
compNames |
an optional vector of length |
drop |
a logical flag (default value: |
comp |
a vector formed by a subset of |
Value
If object
defines the distribution of a SEC random
variable Y
, affineTransSECdistr
computes the
distribution of a+A'Y
and marginalSECdistr
computes the marginal
distribution of the comp
components. In both cases the returned
object is of class SECdistrMv
, except when drop=TRUE
operates, leading to an object of class SECdistrUv
.
Background
These functions implement formulae given in Sections 5.1.4, 5.1.6 and 6.2.2 of the reference below.
References
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
See Also
makeSECdistr
, extractSECdistr
,
SECdistrMv-class
Examples
dp3 <- list(xi=1:3, Omega=toeplitz(1/(1:3)), alpha=c(3,-1,2), nu=5)
st3 <- makeSECdistr(dp3, family="ST", name="ST3", compNames=c("U", "V", "W"))
A <- matrix(c(1,-1,1, 3,0,-2), 3, 2)
new.st <- affineTransSECdistr(st3, a=c(-3,0), A=A)
#
st2 <- marginalSECdistr(st3, comp=c(3,1), name="2D marginal of ST3")