smpsi {smoothmest} | R Documentation |
Auxiliary functions for smoothm
Description
Psi-functions, derivatives and further auxiliary functions used for
computing the estimators in smoothm
.
Usage
psicauchy(x)
psidcauchy(x)
likcauchy(x,mu)
flikcauchy(y,x,mu,sn)
smtfcauchy(x,mu,sn)
smcipsi(y, x, sn=sqrt(2/length(x)))
smcipsid(y, x, sn=sqrt(2/length(x)))
smcpsi(x, sn=sqrt(2/length(x)))
smcpsid(x, sn=sqrt(2/length(x)))
smbpsi(y, x, k=4.685, sn=sqrt(2/length(x)))
smbpsid(y, x, k=4.685, sn=sqrt(2/length(x)))
smbpsii(x, k=4.685, sn=sqrt(2/length(x)))
smbpsidi(x, k=4.685, sn=sqrt(2/length(x)))
smpsi(x,k=0.862,sn=sqrt(2/length(x)))
smpmed(x,sn=sqrt(1/5))
Arguments
x |
numeric vector. |
mu |
numeric. |
y |
numeric vector. |
sn |
numeric. Smoothing constant. See |
k |
numeric. Tuning constant. See |
Details
- psicauchy
psi-function for Cauchy ML-estimator at
x
.- psidcauchy
derivative of
psicauchy
atx
.- likcauchy
Cauchy likelihood of data
x
for mode parametermu
.- flikcauchy
vector of Gaussian density at
y
with mean 0 and st. dev.sn
times Cauchy log-likelihood ofx
with mode parametermu+y
.- smtfcauchy
integral of
flikcauchy
withy
running from-Inf
toInf
.- smcipsi
psicauchy(x-y)*dnorm(y,sd=sn)
.- smcipsid
derivative of
smcipsi
w.r.t.x
.- smcpsi
psi-function for smoothed Cauchy ML-estimator. Integral of
smpcipsi
withy
running from-Inf
toInf
.- smcpsid
integral of
smpcipsid
withy
running from-Inf
toInf
.- smbpsi
(x-y)*psi.bisquare(x-y,c=k)*dnorm(y,sd=sn)
.- smbpsid
psi.bisquare(x-y,c=k,deriv=1)*dnorm(y,sd=sn)
.- smbpsii
psi-function for smoothed bisquare M-estimator. Integral of
smbpsi
withy
running from-Inf
toInf
.- smbpsidi
integral of
smbpsid
withy
running from-Inf
toInf
.- smpsi
psi-function for smoothed Huber-estimator at
x
.- smpmed
psi-function for smoothed median at
x
.
Value
A numeric vector.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
smoothm
, psi.huber
,
psi.bisquare
Examples
psicauchy(1:5)
psidcauchy(1:5)
likcauchy(1:5,0)
flikcauchy(3,1:5,0,1)
smtfcauchy(1:5,0,1)
smcipsi(1,1:3)
smcipsid(1,1:3)
smcpsi(1:5)
smcpsid(1:5)
smbpsi(1,1:5)
smbpsid(0:4,1:5)
smbpsii(1:5)
smbpsidi(1:5)
smpsi(1:5)
smpmed(1:5)