smoothm {smoothmest} | R Documentation |
Smoothed and unsmoothed 1-d location M-estimators
Description
smoothm
is an interface for all the smoothed
M-estimators introduced in Hampel, Hennig and Ronchetti (2011) for
one-dimensional location, the Huber- and Bisquare-M-estimator and the
ML-estimator of the Cauchy distribution, calling all the other
functions documented on this page.
Usage
smoothm(y, method="smhuber",
k=0.862, sn=sqrt(2.046/length(y)),
tol=1e-06, s=mad(y), init="median")
sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median")
smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y),
smmed=FALSE, init="median")
mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median")
smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)),
s=mad(y), init="median")
mlcauchy(y, tol = 1e-06, s=mad(y))
smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
Arguments
y |
numeric vector. Data set. |
method |
one of |
k |
numeric. Tuning constant. This is used for |
sn |
numeric. This is used for |
tol |
numeric. Stopping criterion for algorithms (absolute difference between two successive values). |
s |
numeric. Estimated or assumed scale/standard deviation. |
init |
|
smmed |
logical. If |
Details
The following estimators can be computed (some computational details are given in Hampel et al. 2011):
- Huber estimator.
method="huber"
and functionsehuber
compute the standard Huber estimator (Huber and Ronchetti 2009). The only differences from huber are thats
andinit
can be specified and that the defaultk
is different.- Smoothed Huber estimator.
method="smhuber"
and functionsmhuber
compute the smoothed Huber estimator (Hampel et al. 2011).- Bisquare estimator.
method="bisquare"
and functionbisquare
compute the bisquare M-estimator (Maronna et al. 2006). This usespsi.bisquare
.- Smoothed bisquare estimator.
method="smbisquare"
and functionsmbisquare
compute the smoothed bisquare M-estimator (Hampel et al. 2011). This usespsi.bisquare
- ML estimator for Cauchy distribution.
method="cauchy"
and functionmlcauchy
compute the ML-estimator for the Cauchy distribution.- Smoothed ML estimator for Cauchy distribution.
method="smcauchy"
and functionsmcauchy
compute the smoothed ML-estimator for the Cauchy distribution (Hampel et al. 2011).- Smoothed median.
method="smmed"
and functionsmhuber
withmedian=TRUE
compute the smoothed median (Hampel et al. 2011).
Value
A list with components
mu |
the location estimator. |
method |
see above. |
k |
see above. |
sn |
see above. |
tol |
see above. |
s |
see above. |
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
Examples
library(MASS)
set.seed(10001)
y <- rdoublex(7)
median(y)
huber(y)$mu
smoothm(y)$mu
smoothm(y,method="huber")$mu
smoothm(y,method="bisquare",k=4.685)$mu
smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu
smoothm(y,method="cauchy")$mu
smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu
smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu
smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu