objFunctionSmooth {smoothedLasso} | R Documentation |
Auxiliary function to define the objective function of the smoothed L1 penalized regression operator.
Description
Auxiliary function to define the objective function of the smoothed L1 penalized regression operator.
Usage
objFunctionSmooth(betavector, u, v, w, mu, entropy = TRUE)
Arguments
betavector |
The vector of regression coefficients. |
u |
The function encoding the objective of the regression operator. |
v |
The function encoding the penalty of the regression operator. |
w |
The function encoding the dependence structure among the regression coefficients. |
mu |
The Nesterov smoothing parameter. |
entropy |
A boolean switch to select the entropy prox function (default) or the squared error prox function. |
Value
The value of the smoothed regression operator for the input betavector
.
References
Hahn, G., Lutz, S., Laha, N., and Lange, C. (2020). A framework to efficiently smooth L1 penalties for linear regression. bioRxiv:2020.09.17.301788.
Examples
library(smoothedLasso)
n <- 100
p <- 500
betavector <- runif(p)
X <- matrix(runif(n*p),nrow=n,ncol=p)
y <- X %*% betavector
lambda <- 1
temp <- standardLasso(X,y,lambda)
print(objFunctionSmooth(betavector,temp$u,temp$v,temp$w,mu=0.1))
[Package smoothedLasso version 1.6 Index]