objFunctionGradient {smoothedLasso} | R Documentation |
Auxiliary function which computes the (non-smooth) gradient of an L1 penalized regression operator.
Description
Auxiliary function which computes the (non-smooth) gradient of an L1 penalized regression operator.
Usage
objFunctionGradient(betavector, w, du, dv, dw)
Arguments
betavector |
The vector of regression coefficients. |
w |
The function encoding the dependence structure among the regression coefficients. |
du |
The derivative (gradient) of the objective of the regression operator. |
dv |
The derivative (gradient) of the penalty of the regression operator. |
dw |
The derivative (Jacobian matrix) of the function encoding the dependence structure among the regression coefficients. |
Value
The value of the gradient for the input betavector
.
References
Hahn, G., Lutz, S., Laha, N., and Lange, C. (2020). A framework to efficiently smooth L1 penalties for linear regression. bioRxiv:2020.09.17.301788.
Examples
library(smoothedLasso)
n <- 100
p <- 500
betavector <- runif(p)
X <- matrix(runif(n*p),nrow=n,ncol=p)
y <- X %*% betavector
lambda <- 1
temp <- standardLasso(X,y,lambda)
print(objFunctionGradient(betavector,temp$w,temp$du,temp$dv,temp$dw))
[Package smoothedLasso version 1.6 Index]