| minimizeSmoothedSequence {smoothedLasso} | R Documentation | 
Minimize the objective function of a smoothed regression operator with respect to betavector using the progressive smoothing algorithm.
Description
Minimize the objective function of a smoothed regression operator with respect to betavector using the progressive smoothing algorithm.
Usage
minimizeSmoothedSequence(p, obj, objgrad, muSeq = 2^seq(3, -6))
Arguments
| p | The dimension of the unknown parameters (regression coefficients). | 
| obj | The objective function of the regression operator. Note that in the case of the progressive smoothing algorithm, the objective function must be a function of both  | 
| objgrad | The gradient function of the regression operator. Note that in the case of the progressive smoothing algorithm, the gradient must be a function of both  | 
| muSeq | The sequence of Nesterov smoothing parameters. The default is  | 
Value
The estimator betavector (minimizer) of the regression operator.
References
Hahn, G., Lutz, S., Laha, N., and Lange, C. (2020). A framework to efficiently smooth L1 penalties for linear regression. bioRxiv:2020.09.17.301788.
Examples
library(smoothedLasso)
n <- 100
p <- 500
betavector <- runif(p)
X <- matrix(runif(n*p),nrow=n,ncol=p)
y <- X %*% betavector
lambda <- 1
temp <- standardLasso(X,y,lambda)
obj <- function(z,m) objFunctionSmooth(z,temp$u,temp$v,temp$w,mu=m)
objgrad <- function(z,m) objFunctionSmoothGradient(z,temp$w,temp$du,temp$dv,temp$dw,mu=m)
print(minimizeSmoothedSequence(p,obj,objgrad))