minimizeFunction {smoothedLasso} | R Documentation |
Minimize the objective function of an unsmoothed or smoothed regression operator with respect to betavector
using BFGS.
Description
Minimize the objective function of an unsmoothed or smoothed regression operator with respect to betavector
using BFGS.
Usage
minimizeFunction(p, obj, objgrad)
Arguments
p |
The dimension of the unknown parameters (regression coefficients). |
obj |
The objective function of the regression operator as a function of |
objgrad |
The gradient function of the regression operator as a function of |
Value
The estimator betavector
(minimizer) of the regression operator.
References
Hahn, G., Lutz, S., Laha, N., and Lange, C. (2020). A framework to efficiently smooth L1 penalties for linear regression. bioRxiv:2020.09.17.301788.
Examples
library(smoothedLasso)
n <- 100
p <- 500
betavector <- runif(p)
X <- matrix(runif(n*p),nrow=n,ncol=p)
y <- X %*% betavector
lambda <- 1
temp <- standardLasso(X,y,lambda)
obj <- function(z) objFunctionSmooth(z,temp$u,temp$v,temp$w,mu=0.1)
objgrad <- function(z) objFunctionSmoothGradient(z,temp$w,temp$du,temp$dv,temp$dw,mu=0.1)
print(minimizeFunction(p,obj,objgrad))
[Package smoothedLasso version 1.6 Index]