fusedLasso {smoothedLasso} | R Documentation |
Auxiliary function which returns the objective, penalty, and dependence structure among regression coefficients of the fused Lasso.
Description
Auxiliary function which returns the objective, penalty, and dependence structure among regression coefficients of the fused Lasso.
Usage
fusedLasso(X, y, E, lambda, gamma)
Arguments
X |
The design matrix. |
y |
The response vector. |
E |
The adjacency matrix which encodes with a one in position |
lambda |
The first regularization parameter of the fused Lasso. |
gamma |
The second regularization parameter of the fused Lasso. |
Value
A list with six functions, precisely the objective u
, penalty v
, and dependence structure w
, as well as their derivatives du
, dv
, and dw
.
References
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and Smoothness via the Fused Lasso. J Roy Stat Soc B Met, 67(1):91-108.
Arnold, T.B. and Tibshirani, R.J. (2020). genlasso: Path Algorithm for Generalized Lasso Problems. R package version 1.5.
Hahn, G., Lutz, S., Laha, N., and Lange, C. (2020). A framework to efficiently smooth L1 penalties for linear regression. bioRxiv:2020.09.17.301788.
Examples
library(smoothedLasso)
n <- 100
p <- 500
betavector <- runif(p)
X <- matrix(runif(n*p),nrow=n,ncol=p)
y <- X %*% betavector
E <- matrix(sample(c(TRUE,FALSE),p*p,replace=TRUE),p)
lambda <- 1
gamma <- 0.5
temp <- fusedLasso(X,y,E,lambda,gamma)