makeDTLZ3Function {smoof} | R Documentation |
DTLZ3 Function (family)
Description
Builds and returns the multi-objective DTLZ3 test problem. The formula
is very similar to the formula of DTLZ2, but it uses the g
function
of DTLZ1, which introduces a lot of local Pareto-optimal fronts. Thus, this
problems is well suited to check the ability of an optimizer to converge
to the global Pareto-optimal front.
The DTLZ3 test problem is defined as follows:
Minimize f_1(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \cos(x_{M-1}\pi/2),
Minimize f_2(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \cos(x_{M-2}\pi/2) \sin(x_{M-1}\pi/2),
Minimize f_3(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \cos(x_2\pi/2) \cdots \sin(x_{M-2}\pi/2),
\vdots\\
Minimize f_{M-1}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \cos(x_1\pi/2) \sin(x_2\pi/2),
Minimize f_{M}(\mathbf{x}) = (1+g(\mathbf{x}_M)) \sin(x_1\pi/2),
with 0 \leq x_i \leq 1
, for i=1,2,\dots,n,
where g(\mathbf{x}_M) = 100 \left[|\mathbf{x}_M| + \sum\limits_{x_i \in \mathbf{x}_M} (x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5))\right]
Usage
makeDTLZ3Function(dimensions, n.objectives)
Arguments
dimensions |
[ |
n.objectives |
[ |
Value
[smoof_multi_objective_function
]
References
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001