smle_ph {smlePH} | R Documentation |
Fit the full likelihood proportional hazards model
Description
Fit the proportional hazards model with maximum full likelihood estimation. Sieve estimation is used for estimating the baseline hazard function.
Usage
smle_ph(y, d, x)
Arguments
y |
survival time (> 0). |
d |
right-censoring indicator, |
x |
p-dimensional covariates matrix. |
Details
see Halabi et al., (2024+) for detailed method explanation.
Value
smle_ph
returns a list containing the following components:
-
Coef
: regression estimator and its inferential results. -
Cum.hazard
: baseline cumulative hazard function estimates.
References
Halabi et al., (2024+) Sieve maximum full likelihood estimation for the proportional hazards model
Examples
library(smlePH)
set.seed(111)
n = 200
beta = c(1, -1, 0.5, -0.5, 1)
p = length(beta)
beta = matrix(beta, ncol = 1)
R = matrix(c(rep(0, p^2)), ncol = p)
diag(R) = 1
mu = rep(0, p)
SD = rep(1, p)
S = R * (SD %*% t(SD))
x = MASS::mvrnorm(n, mu, S)
T = (-log(runif(n)) / (2 * exp(x %*% beta)))^(1/2)
C = runif(n, min = 0, max = 2.9)
y = apply(cbind(T,C), 1, min)
d = (T <= C)+0
ord = order(y)
y = y[ord]; x = x[ord,]; d = d[ord]
smle_ph(y = y, d = d, x = x)
[Package smlePH version 0.1.0 Index]