calculate_posterior_no_infections {smidm} | R Documentation |
Negative analysis probability
Description
Calculates the probability that nobody is infected given the negative tests.
Usage
calculate_posterior_no_infections(
negative_persons,
infected_persons,
event,
test_infos,
test_types,
subgroup_size,
distribution = NULL,
info
)
Arguments
negative_persons |
Number of people without the infectious persons. |
infected_persons |
Number of infectious persons. |
event |
Characters, the name of the event, currently: "school" or "day_care_center". |
test_infos |
Matrix with testing information; each row gives the number of tests (1. column) and each test date (following columns) for each test group |
test_types |
Matrix with test day (columns) of each group (rows) and the informations about test types. |
subgroup_size |
Array with the number of persons per test group. |
distribution |
Vector, this is a placeholder |
info |
Dataframe, this is a placeholder |
Details
The probability is based on Bayes' theorem.
Value
The probability p.
See Also
calculate_prior_infections
,
generate_data_extended
, get_test_sensitivities
and calculate_likelihood_negative_tests
.
Examples
test_infos <- matrix(nrow = 2, ncol = 3)
test_infos[1,] <- c(1, 2, NA)
test_infos[2,] <- c(2, 4, 6)
test_types <- matrix(nrow = 2, ncol = 2)
test_types[1,] <- c("PCR", NA)
test_types[2,] <- c("PCR", "Antigen")
calculate_posterior_no_infections(negative_persons = 23,
infected_persons = 2,
event = "school",
test_infos = test_infos,
test_types = test_types,
subgroup_size = c(3, 5))
[Package smidm version 1.0 Index]