normgibbs {smfsb} | R Documentation |
A simple Gibbs sampler for Bayesian inference for the mean and precision of a normal random sample
Description
This function runs a simple Gibbs sampler for the Bayesian posterior distribution of the mean and precision given a normal random sample.
Usage
normgibbs(N, n, a, b, cc, d, xbar, ssquared)
Arguments
N |
The number of iterations of the Gibbs sampler. |
n |
The sample size of the normal random sample. |
a |
The shape parameter of the gamma prior on the sample precision. |
b |
The scale parameter of the gamma prior on the sample precision. |
cc |
The mean of the normal prior on the sample mean. |
d |
The precision of the normal prior on the sample mean. |
xbar |
The sample mean of the data. eg. |
ssquared |
The sample variance of the data. eg. |
Value
An R matrix object containing the samples of the Gibbs sampler.
See Also
Examples
postmat=normgibbs(N=1100,n=15,a=3,b=11,cc=10,d=1/100,xbar=25,ssquared=20)
postmat=postmat[101:1100,]
op=par(mfrow=c(3,3))
plot(postmat)
plot(postmat,type="l")
plot.new()
plot(ts(postmat[,1]))
plot(ts(postmat[,2]))
plot(ts(sqrt(1/postmat[,2])))
hist(postmat[,1],30)
hist(postmat[,2],30)
hist(sqrt(1/postmat[,2]),30)
par(op)
[Package smfsb version 1.5 Index]