morancr.sim {smerc} | R Documentation |
Constant-risk Moran's I statistic
Description
morancr.stat
computes the constant-risk version of the Moran's I
statistic proposed by Walter (1992).
Usage
morancr.sim(nsim = 1, cases, w, ex)
Arguments
nsim |
The number of simulations from which to compute the p-value. |
cases |
The number of cases observed in each region. |
w |
A binary spatial adjacency matrix for the regions. |
ex |
The expected number of cases for each region. The default is calculated under the constant risk hypothesis. |
Value
Returns a numeric value.
Author(s)
Joshua French
References
Walter, S. D. (1992). The analysis of regional patterns in health data: I. Distributional considerations. American Journal of Epidemiology, 136(6), 730-741.
See Also
Examples
data(nydf)
data(nyw)
ex <- sum(nydf$cases) / sum(nydf$pop) * nydf$pop
morancr.sim(nsim = 10, cases = nydf$cases, w = nyw, ex = ex)
[Package smerc version 1.8.3 Index]