cepp.test {smerc} | R Documentation |
Cluster Evalation Permutation Procedure Test
Description
cepp.test
implements the Cluster Evaluation
Permutation Procedure test of Turnbull et al. (1990)
for finding disease clusters.
Usage
cepp.test(
coords,
cases,
pop,
nstar,
ex = sum(cases)/sum(pop) * pop,
nsim = 499,
alpha = 0.1,
longlat = FALSE,
simdist = "multinomial"
)
Arguments
coords |
An |
cases |
The number of cases observed in each region. |
pop |
The population size associated with each region. |
nstar |
The size of the at-risk population in each window. |
ex |
The expected number of cases for each region. The default is calculated under the constant risk hypothesis. |
nsim |
The number of simulations from which to compute the p-value. |
alpha |
The significance level to determine whether a cluster is signficant. Default is 0.10. |
longlat |
The default is |
simdist |
A character string indicating whether the
simulated data should come from a |
Value
Returns a smerc_cluster
object.
Author(s)
Joshua French
References
Bruce W. Turnbull, Eric J. Iwano, William S. Burnett, Holly L. Howe, Larry C. Clark (1990). Monitoring for Clusters of Disease: Application to Leukemia Incidence in Upstate New York, American Journal of Epidemiology, 132(supp1):136-143. <doi:10.1093/oxfordjournals.aje.a115775>
See Also
print.smerc_cluster
,
summary.smerc_cluster
,
plot.smerc_cluster
,
scan.test
Examples
data(nydf)
data(nyw)
coords <- with(nydf, cbind(x, y))
cases <- nydf$cases
pop <- nydf$pop
out <- cepp.test(
coords = coords, cases = cases, pop = pop,
nstar = 1000, alpha = 0.99
)
plot(out)
summary(out)
# better plotting
if (require("sf", quietly = TRUE)) {
data(nysf)
plot(st_geometry(nysf), col = color.clusters(out))
}