smbinning.scaling {smbinning} | R Documentation |
Scaling
Description
It transforms the coefficients of a logistic regression into scaled points based on the following three parameters pre-selected by the analyst: PDO, Score, and Odds.
Usage
smbinning.scaling(logitraw, pdo = 20, score = 720, odds = 99)
Arguments
logitraw |
Logistic regression (glm) that must have specified |
pdo |
Points to double the oods. |
score |
Score at which the desire |
odds |
Desired |
Value
A scaled model from a logistic regression built with binned variables, the parameters used in the scaling process, the expected minimum and maximum score, and the original logistic model.
Examples
# Load library and its dataset
library(smbinning)
# Sampling
pop=smbsimdf1 # Population
train=subset(pop,rnd<=0.7) # Training sample
# Generate binning object to generate variables
smbcbs1=smbinning(train,x="cbs1",y="fgood")
smbcbinq=smbinning.factor(train,x="cbinq",y="fgood")
smbcblineut=smbinning.custom(train,x="cblineut",y="fgood",cuts=c(30,40,50))
smbpmt=smbinning.factor(train,x="pmt",y="fgood")
smbtob=smbinning.custom(train,x="tob",y="fgood",cuts=c(1,2,3))
smbdpd=smbinning.factor(train,x="dpd",y="fgood")
smbdep=smbinning.custom(train,x="dep",y="fgood",cuts=c(10000,12000,15000))
smbod=smbinning.factor(train,x="od",y="fgood")
smbhome=smbinning.factor(train,x="home",y="fgood")
smbinc=smbinning.factor.custom(
train,x="inc",y="fgood",
c("'W01','W02'","'W03','W04','W05'","'W06','W07'","'W08','W09','W10'"))
pop=smbinning.gen(pop,smbcbs1,"g1cbs1")
pop=smbinning.factor.gen(pop,smbcbinq,"g1cbinq")
pop=smbinning.gen(pop,smbcblineut,"g1cblineut")
pop=smbinning.factor.gen(pop,smbpmt,"g1pmt")
pop=smbinning.gen(pop,smbtob,"g1tob")
pop=smbinning.factor.gen(pop,smbdpd,"g1dpd")
pop=smbinning.gen(pop,smbdep,"g1dep")
pop=smbinning.factor.gen(pop,smbod,"g1od")
pop=smbinning.factor.gen(pop,smbhome,"g1home")
pop=smbinning.factor.gen(pop,smbinc,"g1inc")
# Resample
train=subset(pop,rnd<=0.7) # Training sample
test=subset(pop,rnd>0.7) # Testing sample
# Run logistic regression
f=fgood~g1cbs1+g1cbinq+g1cblineut+g1pmt+g1tob+g1dpd+g1dep+g1od+g1home+g1inc
modlogisticsmb=glm(f,data = train,family = binomial())
summary(modlogisticsmb)
# Example: Scaling from logistic parameters to points
smbscaled=smbinning.scaling(modlogisticsmb,pdo=20,score=720,odds=99)
smbscaled$logitscaled # Scaled model
smbscaled$minmaxscore # Expected minimum and maximum Score
smbscaled$parameters # Parameters used for scaling
summary(smbscaled$logitraw) # Extract of original logistic regression
# Example: Generate score from scaled model
pop1=smbinning.scoring.gen(smbscaled=smbscaled, dataset=pop)
# Example Generate SQL code from scaled model
smbinning.scoring.sql(smbscaled)
[Package smbinning version 0.9 Index]