powerDTR {smartDesign} | R Documentation |
Power Dynamic Treatment Regimen (DTR) Trial design clinical trial calculations
Description
Power Calculations Comparing two Dynamic Treatment Regimen (DTR) Trial design clinical trial calculations
Usage
powerDTR(dtr1, dtr2, pG_A1 = 0.8, pG_A2 = 0.8, alpha=0.05)
Arguments
dtr1 |
an object of smartDTR class, created by function of the same name |
dtr2 |
an object of smartDTR class, created by function of the same name |
pG_A1 |
probability of response to therapy given assignment to A1 |
pG_A2 |
probability of response to therapy given assignment to A2 |
alpha |
accepted type-I error rate for power calculations |
Details
more details on power DTR
Value
An object of the powerDTR S3 class, with the following elements:
powerdat: |
data.frame with sens, spec, mu, sigsq and sample size, power |
Author(s)
Jun (Jessie) He, Aberaham Eyman-Casey, Jason P. Sinnwell, Mayo Clinic
Examples
mumat13 <- cbind(G1=c(30,35), G0=c(20,28))
varmat13 <- cbind(G1=c(100,100),G0=c(100,100))
dtr13 <- smartDTR(mu_Barm=mumat13, sigsq_Barm=varmat13,
Barm=c(1,3), nsubject=252, pG_A1=0.8)
mumat24 <- cbind(G1=c(25,32), G0=c(18,23))
varmat24 <- cbind(G1=c(100,100),G0=c(100,100))
dtr24 <- smartDTR(mu_Barm=mumat24, sigsq_Barm=varmat24,
Barm=c(2,4), nsubject=252, pG_A1=0.8, pG_A2=0.8)
pdtr13vs24 <- powerDTR(dtr13, dtr24)
print(pdtr13vs24) ## plot(pdtr13vs24)
[Package smartDesign version 0.74 Index]