sm.variogram {sm} | R Documentation |
Confidence intervals and tests based on smoothing an empirical variogram.
Description
This function constructs an empirical variogram, using the robust form of construction based on square-root absolute value differences of the data. Flexible regression is used to assess a variety of questions about the structure of the data used to construct the variogram, including independence, isotropy and stationarity. Confidence bands for the underlying variogram, and reference bands for the independence, isotropy and stationarity models, can also be constructed under the assumption that the errors in the data are approximately normally distributed.
Usage
sm.variogram(x, y, h, df.se = "automatic", max.dist = NA, n.zero.dist = 1,
original.scale = TRUE, varmat = FALSE, ...)
Arguments
x |
a vector or two-column matrix of spatial location values. |
y |
a vector of responses observed at the spatial locations. |
h |
a smoothing parameter to be used on the distance scale. A normal kernel
function is used and |
df.se |
the degrees of freedom used when smoothing the empirical variogram to estimate standard errors. The default value of "automatic" selects the degrees of smoothing described in the Bowman and Crujeiras (2013) reference below. |
max.dist |
this can be used to constrain the distances used in constructing the variogram. The default is to use all distances. |
n.zero.dist |
an integer value which sets the lower limit on the number of pairs of data points with distance zero (in other words the number of pairs whose positions are identical) to trigger a separate variogram bin for zero distance. Repeat observations at the same location can be informative about the variance of the underlying process. The default for This parameter has no effect when |
original.scale |
a logical value which determines whether the plots are constructed on the original variogram scale (the default) or on the square-root absolute value scale on which the calculations are performed. |
varmat |
a logical value which determines whether the variance matrix of the estimated variogram is returned. |
... |
other optional parameters are passed to the An important parameter here is Other relevant parameters are
|
Details
The reference below describes the statistical methods used in the function.
Note that, apart from the simple case of the independence model, the calculations required are extensive and so the function can be slow.
The display
argument has a special meaning for
this function. Its default value is "binned"
, which plots the
binned version of the empirical variogram. As usual, the value "none"
will suppress the graphical display. Any other value will lead to a plot
of the individual differences between all observations. This will lead
to a very large number of plotted points, unless the dataset is small.
Value
A list with the following components:
sqrtdiff , distance |
the raw differences and distances |
sqrtdiff.mean , distance.mean |
the binned differences and distances |
weights |
the frequencies of the bins |
estimate |
the values of the estimate at the evaluation points |
eval.points |
the evaluation points |
h |
the value of the smoothing parameter used |
ibin |
an indicator of the bin in which the distance between each pair of observations was placed |
ipair |
the indices of the original observations used to construct each pair |
When model = "isotropic"
or model = "stationary"
the following components may also be returned, depending on the arguments passed in ... or the settings in sm.options
:
p |
the p-value of the test |
se |
the standard errors of the binned values (if the argument |
se.band |
when an independence model is examined, this gives the standard error of the difference between the smooth estimate and the mean of all the data points, if a reference band has been requested |
V |
the variance matrix of the binned variogram. When |
sdiff |
the standardised difference between the estimate of the variogram and the reference model, evaluated at |
levels |
the levels of standardised difference at which contours are drawn in the case of |
Side Effects
a plot on the current graphical device is produced, unless the option display = "none"
is set.
References
Diblasi, A. and Bowman, A.W. (2001). On the use of the variogram for checking independence in a Gaussian spatial process. Biometrics, 57, 211-218.
Bowman, A.W. and Crujeiras, R.M. (2013). Inference for variograms. Computational Statistics and Data Analysis, 66, 19-31.
See Also
Examples
## Not run:
with(coalash, {
Position <- cbind(East, North)
sm.options(list(df = 6, se = TRUE))
par(mfrow=c(2,2))
sm.variogram(Position, Percent, original.scale = FALSE, se = FALSE)
sm.variogram(Position, Percent, original.scale = FALSE)
sm.variogram(Position, Percent, original.scale = FALSE, model = "independent")
sm.variogram(East, Percent, original.scale = FALSE, model = "independent")
par(mfrow=c(1,1))
})
# Comparison of Co in March and September
with(mosses, {
nbins <- 12
vgm.m <- sm.variogram(loc.m, Co.m, nbins = nbins, original.scale = TRUE,
ylim = c(0, 1.5))
vgm.s <- sm.variogram(loc.s, Co.s, nbins = nbins, original.scale = TRUE,
add = TRUE, col.points = "blue")
trns <- function(x) (x / 0.977741)^4
del <- 1000
plot(vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean), type = "b",
ylim = c(0, 1.5), xlab = "Distance", ylab = "Semi-variogram")
points(vgm.s$distance.mean - del, trns(vgm.s$sqrtdiff.mean), type = "b",
col = "blue", pch = 2, lty = 2)
plot(vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean), type = "b",
ylim = c(0, 1.5), xlab = "Distance", ylab = "Semi-variogram")
points(vgm.s$distance.mean - del, trns(vgm.s$sqrtdiff.mean), type = "b",
col = "blue", pch = 2, lty = 2)
segments(vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean - 2 * vgm.m$se),
vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean + 2 * vgm.m$se))
segments(vgm.s$distance.mean - del, trns(vgm.s$sqrtdiff.mean - 2 * vgm.s$se),
vgm.s$distance.mean - del, trns(vgm.s$sqrtdiff.mean + 2 * vgm.s$se),
col = "blue", lty = 2)
mn <- (vgm.m$sqrtdiff.mean + vgm.s$sqrtdiff.mean) / 2
se <- sqrt(vgm.m$se^2 + vgm.s$se^2)
plot(vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean), type = "n",
ylim = c(0, 1.5), xlab = "Distance", ylab = "Semi-variogram")
polygon(c(vgm.m$distance.mean, rev(vgm.m$distance.mean)),
c(trns(mn - se), rev(trns(mn + se))),
border = NA, col = "lightblue")
points(vgm.m$distance.mean, trns(vgm.m$sqrtdiff.mean))
points(vgm.s$distance.mean, trns(vgm.s$sqrtdiff.mean), col = "blue", pch = 2)
vgm1 <- sm.variogram(loc.m, Co.m, nbins = nbins, varmat = TRUE,
display = "none")
vgm2 <- sm.variogram(loc.s, Co.s, nbins = nbins, varmat = TRUE,
display = "none")
nbin <- length(vgm1$distance.mean)
vdiff <- vgm1$sqrtdiff.mean - vgm2$sqrtdiff.mean
tstat <- c(vdiff %*% solve(vgm1$V + vgm2$V) %*% vdiff)
pval <- 1 - pchisq(tstat, nbin)
print(pval)
})
# Assessing isotropy for Hg in March
with(mosses, {
sm.variogram(loc.m, Hg.m, model = "isotropic")
})
# Assessing stationarity for Hg in September
with(mosses, {
vgm.sty <- sm.variogram(loc.s, Hg.s, model = "stationary")
i <- 1
image(vgm.sty$eval.points[[1]], vgm.sty$eval.points[[2]], vgm.sty$estimate[ , , i],
col = topo.colors(20))
contour(vgm.sty$eval.points[[1]], vgm.sty$eval.points[[2]], vgm.sty$sdiff[ , , i],
col = "red", add = TRUE)
})
## End(Not run)