sm.poisson.bootstrap {sm} | R Documentation |
Bootstrap goodness-of-fit test for a Poisson regression model
Description
This function is associated with sm.poisson
for the underlying
fitting procedure. It performs a Pseudo-Likelihood Ratio Test for the
goodness-of-fit of a standard parametric Poisson regression of specified
degree
in the covariate x
.
Usage
sm.poisson.bootstrap(x, y, h, degree = 1,
fixed.disp = FALSE, intercept = TRUE, ...)
Arguments
x |
vector of the covariate values |
y |
vector of the response values; they must be nonnegative integers. |
h |
the smoothing parameter; it must be positive. |
degree |
specifies the degree of the fitted polynomial in |
fixed.disp |
if |
intercept |
|
... |
additional parameters passed to |
Details
see Section 5.4 of the reference below.
Value
a list containing the observed value of the Pseudo-Likelihood Ratio Test statistic, its observed p-value as estimated via the bootstrap method, and the vector of estimated dispersion parameters when this value is not forced to be 1.
Side Effects
Graphical output representing the bootstrap samples is produced on the current graphical device. The estimated dispersion parameter, the value of the test statistic and the observed significance level are printed.
References
Bowman, A.W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.
See Also
sm.poisson
, sm.binomial.bootstrap
Examples
## takes a while: extend sm.script(muscle)
with(muscle, {
TypeI <- TypeI.P + TypeI.R + TypeI.B
sm.poisson.bootstrap(log(TypeI), TypeII, h = 0.5)
})