| sm.autoregression {sm} | R Documentation |
Nonparametric estimation of the autoregression function
Description
This function estimates nonparametrically the autoregression function
(conditional mean given the past values) of a time series x,
assumed to be stationary.
Usage
sm.autoregression(x, h = hnorm(x), d = 1, maxlag = d, lags,
se = FALSE, ask = TRUE)
Arguments
x |
vector containing the time series values. |
h |
the bandwidth used for kernel smoothing. |
d |
number of past observations used for conditioning; it must be 1 (default value) or 2. |
maxlag |
maximum of the lagged values to be considered (default value is |
lags |
if |
se |
if |
ask |
if |
Details
see Section 7.3 of the reference below.
Value
a list with the outcome of the final estimation (corresponding to
the last value or pairs of values of lags), as returned by sm.regression.
Side Effects
graphical output is produced on the current device.
References
Bowman, A.W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.
See Also
Examples
sm.autoregression(log(lynx), maxlag=3, se=TRUE)
sm.autoregression(log(lynx), lags=cbind(2:3,4:5))