| logistic2ph {sleev} | R Documentation | 
Sieve maximum likelihood estimator (SMLE) for two-phase logistic regression problems
Description
This function returns the sieve maximum likelihood estimators (SMLE) for the logistic regression model from Lotspeich et al. (2021).
Usage
logistic2ph(
  Y_unval = NULL,
  Y = NULL,
  X_unval = NULL,
  X = NULL,
  Z = NULL,
  Bspline = NULL,
  data = NULL,
  hn_scale = 1,
  noSE = FALSE,
  TOL = 1e-04,
  MAX_ITER = 1000,
  verbose = FALSE
)
Arguments
| Y_unval | Column name of the error-prone or unvalidated binary outcome. This argument is required. | 
| Y | Column name that stores the validated value of  | 
| X_unval | Specifies the columns of the error-prone covariates. This argument is required. | 
| X | Specifies the columns that store the validated values of  | 
| Z | Specifies the columns of the accurately measured covariates. This argument is optional. | 
| Bspline | Specifies the columns of the B-spline basis. This argument is required. | 
| data | Specifies the name of the dataset. This argument is required. | 
| hn_scale | Specifies the scale of the perturbation constant in the variance estimation. For example, if  | 
| noSE | If  | 
| TOL | Specifies the convergence criterion in the EM algorithm. The default value is  | 
| MAX_ITER | Maximum number of iterations in the EM algorithm. The default number is  | 
| verbose | If  | 
Value
| coefficients | Stores the analysis results. | 
| outcome_err_coefficients | Stores the outcome error model results. | 
| Bspline_coefficients | Stores the final B-spline coefficient estimates. | 
| covariance | Stores the covariance matrix of the regression coefficient estimates. | 
| converge | In parameter estimation, if the EM algorithm converges, then  | 
| converge_cov | In variance estimation, if the EM algorithm converges, then  | 
| converge_msg | In parameter estimation, if the EM algorithm does not converge, then  | 
References
Lotspeich, S. C., Shepherd, B. E., Amorim, G. G. C., Shaw, P. A., & Tao, R. (2021). Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort. Biometrics, biom.13512. https://doi.org/10.1111/biom.13512