logistic2ph {sleev} | R Documentation |
Sieve maximum likelihood estimator (SMLE) for two-phase logistic regression problems
Description
This function returns the sieve maximum likelihood estimators (SMLE) for the logistic regression model from Lotspeich et al. (2021).
Usage
logistic2ph(
Y_unval = NULL,
Y = NULL,
X_unval = NULL,
X = NULL,
Z = NULL,
Bspline = NULL,
data = NULL,
hn_scale = 1,
noSE = FALSE,
TOL = 1e-04,
MAX_ITER = 1000,
verbose = FALSE
)
Arguments
Y_unval |
Column name of the error-prone or unvalidated binary outcome. This argument is required. |
Y |
Column name that stores the validated value of |
X_unval |
Specifies the columns of the error-prone covariates. This argument is required. |
X |
Specifies the columns that store the validated values of |
Z |
Specifies the columns of the accurately measured covariates. This argument is optional. |
Bspline |
Specifies the columns of the B-spline basis. This argument is required. |
data |
Specifies the name of the dataset. This argument is required. |
hn_scale |
Specifies the scale of the perturbation constant in the variance estimation. For example, if |
noSE |
If |
TOL |
Specifies the convergence criterion in the EM algorithm. The default value is |
MAX_ITER |
Maximum number of iterations in the EM algorithm. The default number is |
verbose |
If |
Value
coefficients |
Stores the analysis results. |
outcome_err_coefficients |
Stores the outcome error model results. |
Bspline_coefficients |
Stores the final B-spline coefficient estimates. |
covariance |
Stores the covariance matrix of the regression coefficient estimates. |
converge |
In parameter estimation, if the EM algorithm converges, then |
converge_cov |
In variance estimation, if the EM algorithm converges, then |
converge_msg |
In parameter estimation, if the EM algorithm does not converge, then |
References
Lotspeich, S. C., Shepherd, B. E., Amorim, G. G. C., Shaw, P. A., & Tao, R. (2021). Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort. Biometrics, biom.13512. https://doi.org/10.1111/biom.13512