fit.sld.lmom {sld} | R Documentation |
Fit the skew logistic distribution using L-Moments
Description
Fits the quantile-based Skew Logistic Distribution using L-Moments.
fit.sld.lmom
calculates the sample L Moments of a dataset and uses the
method of L Moments to estimate the parameters of the skew logistic distribution.
fit.sld.lmom.given
fits the skew logistic using user-supplied values
of the first three L Moments.
Usage
fit.sld.lmom.given(lmoms,n=NULL)
fit.sld.lmom(data)
Arguments
lmoms |
A vector of length 3, containing the first and second (sample)
L Moments and the 3rd (sample) L Moment ratio ( |
n |
The sample size |
data |
A vector containing a dataset |
Details
The method of L-Moments estimates of the parameters of the quantile-based skew logistic distribution are:
\hat\alpha=L_1 - 6 L_3
\hat\beta = 2 L_2
\hat\delta= \frac 12 \left( 1 + 3\tau_3\right)
Note that L_3
in the \hat\alpha
estimate is the 3rd L-Moment, not the 3rd L-Moment
ratio (\tau_3 = L_3/L_2
).
fit.sld.lmom
uses the samlmu
function (from
the lmom
package) to calculate the sample L moments, then
fit.sld.lmom.given
to calculate the estimates.
Value
If the sample size is unknown (via using fit.sld.lmom.given
and not specifying the sample size), a vector of length 3, with the estimated parameters,
\hat\alpha
, \hat\beta
and \hat\delta
.
If the sample size is known, a 3 by 2 matrix. The first column
contains the estimated parameters,
\hat\alpha
, \hat\beta
and \hat\delta
,
and the second column provides asymptotic standard errors for these.
Note that if |\tau_3| > \frac 13
,
\hat\delta
is beyond its allowed value of [0,1]
and the function returns an error.
Values of |\tau_3|
, beyond
\frac 13
correspond to distributions with
greater skew than the exponential / reflected exponential,
which form the limiting cases of the skew logistic distribution.
Author(s)
Robert King, robert.king.newcastle@gmail.com, https://github.com/newystats and Paul van Staden
References
van Staden, P.J. and King, Robert A.R. (2015) The quantile-based skew logistic distribution, Statistics and Probability Letters 96 109–116. doi: 10.1016/j.spl.2014.09.001
van Staden, Paul J. 2013 Modeling of generalized families of probability distribution in the quantile statistical universe. PhD thesis, University of Pretoria. http://hdl.handle.net/2263/40265
See Also
Examples
generated.data <- rsl(300,c(0,1,.4))
estimate1 <- fit.sld.lmom(generated.data)
estimate2 <- fit.sld.lmom.given(c(0,1,.3),n=300)
data(PCB1)
hist(PCB1,prob=TRUE,main="PCB in Pelican Egg Yolk with SLD fit")
fit.pcb <- fit.sld.lmom(PCB1)
print(fit.pcb)
plotsld(fit.pcb[,1],add=TRUE,col="blue")