slasso.fr_cv {slasso} | R Documentation |
Cross-validation for the S-LASSO estimator
Description
K-fold cross-validation procedure to choose the tuning parameters for the S-LASSO estimator (Centofanti et al., 2020).
Usage
slasso.fr_cv(
Y_fd,
X_fd,
basis_s,
basis_t,
K = 10,
kss_rule_par = 0.5,
lambda_L_vec = NULL,
lambda_s_vec = NULL,
lambda_t_vec = NULL,
B0 = NULL,
ncores = 1,
...
)
Arguments
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
K |
Number of folds. Default is 10. |
kss_rule_par |
Parameter of the |
lambda_L_vec |
Vector of regularization parameters of the functional LASSO penalty. |
lambda_s_vec |
Vector of regularization parameters of the smoothness penalty along the |
lambda_t_vec |
Vector of regularization parameters of the smoothness penalty along the |
B0 |
Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of |
ncores |
If |
... |
Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the |
Value
A list containing the following arguments:
-
lambda_opt_vec
: Vector of optimal tuning parameters. -
CV
: Estimated prediction errors. -
CV_sd
: Standard errors of the estimated prediction errors. -
per_0
: The fractions of domain where the coefficient function is zero for all the tuning parameters combinations. -
comb_list
: The combinations oflambda_L
,lambda_s
andlambda_t
explored. -
Y_fd
: The response functions. -
X_fd
: The covariate functions.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-60
n_basis_t<-60
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso_cv<-slasso.fr_cv(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L_vec=seq(0,1,by=1),lambda_s_vec=c(-9),lambda_t_vec=-7,B0=NULL,
max_iterations=10,K=2,invisible=1,ncores=1)