skellam.mle {skellam} | R Documentation |
MLE of the Skellam distribution
Description
MLE of the Skellam distribution.
Usage
skellam.mle(x)
Arguments
x |
A vector of integers, positive or negative. |
Details
Instead of having to maximise the log-likelihood with respect
to the two parameters, \lambda_1
and \lambda_2
, we maximise with respect to
\lambda_2
and then \lambda_1 = \lambda_2 + \bar{x}
. This makes it faster.
The command "nlm" is used to optimise the log-likelihood as it proved to be faster than the "optimise".
Value
A list including:
iters |
The number of iterations required by "nlm". |
loglik |
The maximised log-likelihood value. |
param |
The estimated parameters, |
Author(s)
Michail Tsagris
References
Butler, R. (2007) Saddlepoint Approximations with Applications, Cambridge University Press, Cambridge & New York, p.17.
Johnson, N. L. (1959) On an extension of the connection between Poisson and chi^2
distributions.
Biometrika 46, 352–362.
Johnson, N. L.; Kotz, S.; Kemp, A. W. (1993) Univariate Discrete Distributions, 2nd ed., John Wiley and Sons, New York, pp.190-192.
Skellam, J. G. (1946) The frequency distribution of the difference between two Poisson variates belonging to different populations. Journal of the Royal Statistical Society, series A 109/3, 26.
Strackee, J.; van der Gon, J. J. D. (1962) The frequency distribution of the difference between two Poisson variates. Statistica Neerlandica 16/1, 17-23.
Abdulhamid, A. A.; Maha, A. O. (2010) On The Poisson Difference Distribution Inference and Applications. BULLETIN of the Malaysian Mathematical Sciences Society, 33/1, 17–45.
Wikipedia. Skellam distribution https://en.wikipedia.org/wiki/Skellam_distribution
Examples
require('skellam')
x1 <- rpois(1000, 10)
x2 <- rpois(1000, 6)
x <- x1 - x2
skellam.mle(x)
x1 <- rpois(10000, 10)
x2 <- rpois(10000, 6)
x <- x1 - x2
skellam.mle(x)