morph_mature {sizeMat} | R Documentation |
Estimate morphometric mature
Description
Estimate size at morphometric maturity.
Usage
morph_mature(data, method = "fq", niter = 999, seed = 70388)
Arguments
data |
an object of class 'classify' with the allometric variables ("X", "Y") and classification of maturity (juveniles = 0, adults = 1). |
method |
a character string indicating the method to be applied, |
niter |
number of iterations (bootstrap resampling). |
seed |
a single value, interpreted as an integer. |
Details
Estimate the size at morphometric maturity using a logistic regression with X variable and maturity classification (two categories: juveniles and adults).
The function requires an object of class "classify" with the X, Y (allometric variables) and classification of maturity (juveniles = 0, adults = 1).
The argument method
requires a character string indicating which regression will be used for the test.
If method = "fq"
the logistic regression is based on GLM (frequentist) and if method = "bayes"
a sample from the posterior distribution
of a logistic regression model using a random walk Metropolis algorithm is generated (see MCMClogit function).
The argument niter
requires a number. For the GLM regression (method = "fq"
), a non-parametric bootstrap method consists
in generate B bootstrap samples, by resampling with replacement the original data. Then all statistics for each parameter
can be calculated from each bootstrap sample (median and confidence intervals).
For the method = "bayes"
, the argument 'niter' is related to the number of Metropolis iterations for the sampler.
Value
An object of class 'morphMat'.
model
the summary statistics of the model.
A_boot
the 'n iter' values of parameter A.
B_boot
the 'n iter' values of parameter B.
L50
the 'n iter' values of parameter L50 (size at morphometric maturity).
out
a dataframe with the allometric variables "X" and "Y", classification of maturity, the fitted values for
logistic regression and confidence intervals (95%). Also the summary statistics of the model is provided.
Examples
data(crabdata)
classify_data = classify_mature(crabdata, varNames = c("carapace_width", "chela_height"),
varSex = "sex_category", selectSex = NULL, method = "ld")
my_mature = morph_mature(classify_data, method = "fq", niter = 50)
# 'niter' parameters:
my_mature$A_boot
my_mature$B_boot
my_mature$L50_boot
my_mature$out