sits_whittaker {sits} | R Documentation |
Filter time series with whittaker filter
Description
The algorithm searches for an optimal warping polynomial. The degree of smoothing depends on smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5 for very slight smoothing and lambda = 5.0 for strong smoothing.
Usage
sits_whittaker(data = NULL, lambda = 0.5)
Arguments
data |
Time series or matrix. |
lambda |
Smoothing factor to be applied (default 0.5). |
Value
Filtered time series
Author(s)
Rolf Simoes, rolf.simoes@inpe.br
Gilberto Camara, gilberto.camara@inpe.br
Felipe Carvalho, felipe.carvalho@inpe.br
References
Francesco Vuolo, Wai-Tim Ng, Clement Atzberger, "Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data", Int Journal of Applied Earth Observation and Geoinformation, vol. 57, pg. 202-213, 2107.
See Also
Examples
if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit,
suffix = c("", ".WHIT"))
# Plot the two points to see the smoothing effect
plot(point_ndvi)
}
[Package sits version 1.5.0 Index]