| sits_variance {sits} | R Documentation | 
Calculate the variance of a probability cube
Description
Takes a probability cube and estimate the local variance of the logit of the probability, to support the choice of parameters for Bayesian smoothing.
Usage
sits_variance(
  cube,
  window_size = 9L,
  neigh_fraction = 0.5,
  memsize = 4L,
  multicores = 2L,
  output_dir,
  version = "v1"
)
## S3 method for class 'probs_cube'
sits_variance(
  cube,
  window_size = 9L,
  neigh_fraction = 0.5,
  memsize = 4L,
  multicores = 2L,
  output_dir,
  version = "v1"
)
## S3 method for class 'raster_cube'
sits_variance(
  cube,
  window_size = 7L,
  neigh_fraction = 0.5,
  memsize = 4L,
  multicores = 2L,
  output_dir,
  version = "v1"
)
## S3 method for class 'derived_cube'
sits_variance(
  cube,
  window_size = 7L,
  neigh_fraction = 0.5,
  memsize = 4L,
  multicores = 2L,
  output_dir,
  version = "v1"
)
## Default S3 method:
sits_variance(
  cube,
  window_size = 7L,
  neigh_fraction = 0.5,
  memsize = 4L,
  multicores = 2L,
  output_dir,
  version = "v1"
)
Arguments
| cube | Probability data cube (class "probs_cube") | 
| window_size | Size of the neighborhood (odd integer) | 
| neigh_fraction | Fraction of neighbors with highest probability for Bayesian inference (numeric from 0.0 to 1.0) | 
| memsize | Maximum overall memory (in GB) to run the smoothing (integer, min = 1, max = 16384) | 
| multicores | Number of cores to run the smoothing function (integer, min = 1, max = 2048) | 
| output_dir | Output directory for image files (character vector of length 1) | 
| version | Version of resulting image (character vector of length 1) | 
Value
A variance data cube.
Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.
Author(s)
Gilberto Camara, gilberto.camara@inpe.br
Rolf Simoes, rolf.simoes@inpe.br
Examples
if (sits_run_examples()) {
    # create a ResNet model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # plot the probability cube
    plot(probs_cube)
    # smooth the probability cube using Bayesian statistics
    var_cube <- sits_variance(probs_cube, output_dir = tempdir())
    # plot the variance cube
    plot(var_cube)
}