sits_tuning_hparams {sits} | R Documentation |
Tuning machine learning models hyper-parameters
Description
This function allow user building the hyper-parameters space used
by sits_tuning()
function search randomly the best parameter
combination.
Users should pass the possible values for hyper-parameters as constants or by calling the following random functions:
-
uniform(min = 0, max = 1, n = 1)
: returns random numbers from a uniform distribution with parameters min and max. -
choice(..., replace = TRUE, n = 1)
: returns random objects passed to...
with replacement or not (parameterreplace
). -
randint(min, max, n = 1)
: returns random integers from a uniform distribution with parameters min and max. -
normal(mean = 0, sd = 1, n = 1)
: returns random numbers from a normal distribution with parameters min and max. -
lognormal(meanlog = 0, sdlog = 1, n = 1)
: returns random numbers from a lognormal distribution with parameters min and max. -
loguniform(minlog = 0, maxlog = 1, n = 1)
: returns random numbers from a loguniform distribution with parameters min and max. -
beta(shape1, shape2, n = 1)
: returns random numbers from a beta distribution with parameters min and max.
These functions accepts n
parameter to indicate how many values
should be returned.
Usage
sits_tuning_hparams(...)
Arguments
... |
Used to prepare hyper-parameter space |
Value
A list containing the hyper-parameter space to be passed to
sits_tuning()
's params
parameter.
Examples
if (sits_run_examples()) {
# find best learning rate parameters for TempCNN
tuned <- sits_tuning(
samples_modis_ndvi,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(
optimizer = choice(
torchopt::optim_adamw,
torchopt::optim_yogi
),
opt_hparams = list(
lr = beta(0.3, 5)
)
),
trials = 4,
multicores = 2,
progress = FALSE
)
}