sits_pred_sample {sits} | R Documentation |
Obtain a fraction of the predictors data frame
Description
Many machine learning algorithms (especially deep learning) use part of the original samples as test data to adjust its hyperparameters and to find an optimal point of convergence using gradient descent. This function extracts a fraction of the predictors to serve as test values for the deep learning algorithm.
Usage
sits_pred_sample(pred, frac)
Arguments
pred |
X-Y predictors: a data.frame with one row per sample. |
frac |
Fraction of the X-Y predictors to be extracted |
Value
A data.frame with the chosen fraction of the X-Y predictors.
Note
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.
Author(s)
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
pred <- sits_predictors(samples_modis_ndvi)
pred_frac <- sits_pred_sample(pred, frac = 0.5)
}
[Package sits version 1.5.0 Index]