sits_combine_predictions {sits} | R Documentation |
Estimate ensemble prediction based on list of probs cubes
Description
Calculate an ensemble predictor based a list of probability cubes. The function combines the output of two or more classifier to derive a value which is based on weights assigned to each model. The supported types of ensemble predictors are 'average' and 'uncertainty'.
Usage
sits_combine_predictions(
cubes,
type = "average",
...,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1"
)
## S3 method for class 'average'
sits_combine_predictions(
cubes,
type = "average",
...,
weights = NULL,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1"
)
## S3 method for class 'uncertainty'
sits_combine_predictions(
cubes,
type = "uncertainty",
...,
uncert_cubes,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1"
)
## Default S3 method:
sits_combine_predictions(cubes, type, ...)
Arguments
cubes |
List of probability data cubes (class "probs_cube") |
type |
Method to measure uncertainty. One of "average" or "uncertainty" |
... |
Parameters for specific functions. |
memsize |
Memory available for classification in GB (integer, min = 1, max = 16384). |
multicores |
Number of cores to be used for classification (integer, min = 1, max = 2048). |
output_dir |
Valid directory for output file. (character vector of length 1). |
version |
Version of the output (character vector of length 1). |
weights |
Weights for averaging (numeric vector). |
uncert_cubes |
Uncertainty cubes to be used as local weights when type = "uncertainty" is selected (list of tibbles with class "uncertainty_cube") |
Value
A combined probability cube (tibble of class "probs_cube").
Author(s)
Gilberto Camara, gilberto.camara@inpe.br
Rolf Simoes, rolf.simoes@inpe.br
Examples
if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir
)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube using rfor model
probs_rfor_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir(),
version = "rfor"
)
# create an XGBoost model
svm_model <- sits_train(samples_modis_ndvi, sits_svm())
# classify a data cube using SVM model
probs_svm_cube <- sits_classify(
data = cube, ml_model = svm_model, output_dir = tempdir(),
version = "svm"
)
# create a list of predictions to be combined
pred_cubes <- list(probs_rfor_cube, probs_svm_cube)
# combine predictions
comb_probs_cube <- sits_combine_predictions(
pred_cubes,
output_dir = tempdir()
)
# plot the resulting combined prediction cube
plot(comb_probs_cube)
}