sits_clean {sits} | R Documentation |
Cleans a classified map using a local window
Description
Applies a modal function to clean up possible noisy pixels keeping the most frequently values within the neighborhood. In a tie, the first value of the vector is considered.
Usage
sits_clean(
cube,
window_size = 5L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE
)
## S3 method for class 'class_cube'
sits_clean(
cube,
window_size = 5L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE
)
## S3 method for class 'raster_cube'
sits_clean(
cube,
window_size = 5L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE
)
## S3 method for class 'derived_cube'
sits_clean(
cube,
window_size = 5L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE
)
## Default S3 method:
sits_clean(
cube,
window_size = 5L,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE
)
Arguments
cube |
Classified data cube (tibble of class "class_cube"). |
window_size |
An odd integer representing the size of the sliding window of the modal function (min = 1, max = 15). |
memsize |
Memory available for classification in GB (integer, min = 1, max = 16384). |
multicores |
Number of cores to be used for classification (integer, min = 1, max = 2048). |
output_dir |
Valid directory for output file. (character vector of length 1). |
version |
Version of the output file (character vector of length 1) |
progress |
Logical: Show progress bar? |
Value
A tibble with an classified map (class = "class_cube").
Author(s)
Felipe Carvalho, felipe.carvalho@inpe.br
Examples
if (sits_run_examples()) {
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube,
ml_model = rf_model,
output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(
probs_cube,
output_dir = tempdir()
)
# apply a mode function in the labelled cube
clean_cube <- sits_clean(
cube = label_cube,
window_size = 5,
output_dir = tempdir(),
multicores = 1
)
}
[Package sits version 1.5.0 Index]