plot.uncertainty_vector_cube {sits} | R Documentation |
Plot uncertainty vector cubes
Description
plots a probability cube using stars
Usage
## S3 method for class 'uncertainty_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1]],
palette = "RdYlGn",
style = "cont",
rev = TRUE,
scale = 0.8
)
Arguments
x |
Object of class "probs_vector_cube". |
... |
Further specifications for plot. |
tile |
Tile to be plotted. |
palette |
RColorBrewer palette |
style |
Method to process the color scale ("cont", "order", "quantile", "fisher", "jenks", "log10") |
rev |
Reverse order of colors in palette? |
scale |
Scale to plot map (0.4 to 1.0) |
Value
A plot containing probabilities associated to each class for each pixel.
Author(s)
Gilberto Camara, gilberto.camara@inpe.br
Examples
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir
)
# segment the image
segments <- sits_segment(
cube = cube,
seg_fn = sits_slic(step = 5,
compactness = 1,
dist_fun = "euclidean",
avg_fun = "median",
iter = 20,
minarea = 10,
verbose = FALSE),
output_dir = tempdir()
)
# classify a data cube
probs_vector_cube <- sits_classify(
data = segments,
ml_model = rfor_model,
output_dir = tempdir()
)
# measure uncertainty
uncert_vector_cube <- sits_uncertainty(
cube = probs_vector_cube,
type = "margin",
output_dir = tempdir()
)
# plot the resulting uncertainty cube
plot(uncert_vector_cube)
}
[Package sits version 1.5.0 Index]