wle.rasch {sirt} | R Documentation |
Weighted Likelihood Estimation of Person Abilities
Description
This function computes weighted likelihood estimates for dichotomous responses based on the Rasch model (Warm, 1989).
Usage
wle.rasch(dat, dat.resp=NULL, b, itemweights=1 + 0 * b,
theta=rep(0, nrow(dat)), conv=0.001, maxit=200,
wle.adj=0, progress=FALSE)
Arguments
dat |
An |
dat.resp |
Optional data frame with dichotomous response indicators |
b |
Vector of length |
itemweights |
Optional vector of fixed item discriminations |
theta |
Optional vector of initial person parameter estimates |
conv |
Convergence criterion |
maxit |
Maximal number of iterations |
wle.adj |
Constant for WLE adjustment |
progress |
Display progress? |
Value
A list with following entries
theta |
Estimated weighted likelihood estimate |
dat.resp |
Data frame with dichotomous response indicators. A one indicates
an observed response, a zero a missing response. See also |
p.ia |
Matrix with expected item response, i.e.
the probabilities |
wle |
WLE reliability (Adams, 2005) |
References
Adams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31, 162-172.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
See Also
For standard errors of weighted likelihood estimates estimated via jackknife
see wle.rasch.jackknife
.
For a joint estimation of item and person parameters see the joint maximum
likelihood estimation method in rasch.jml
.
Examples
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
# estimate the Rasch model
mod <- sirt::rasch.mml2(data.read)
mod$item
# estmate WLEs
mod.wle <- sirt::wle.rasch( dat=data.read, b=mod$item$b )