sirt-package {sirt}R Documentation

Supplementary Item Response Theory Models

Description

Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).

Details

The sirt package enables the estimation of following models:

Author(s)

Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)

Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>

References

Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. doi:10.1080/10705511.2014.919210

Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141-157.

Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. doi:10.1007/s11336-010-9190-4

DeCarlo, T., Kim, Y., & Johnson, M. S. (2011). A hierarchical rater model for constructed responses, with a signal detection rater model. Journal of Educational Measurement, 48(3), 333-356. doi:10.1111/j.1745-3984.2011.00143.x

Dimitrov, D. (2003). Marginal true-score measures and reliability for binary items as a function of their IRT parameters. Applied Psychological Measurement, 27, 440-458.

Dimitrov, D. M. (2007). Least squares distance method of cognitive validation and analysis for binary items using their item response theory parameters. Applied Psychological Measurement, 31, 367-387.

Erosheva, E. A., Fienberg, S. E., & Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. Annals of Applied Statistics, 1, 502-537.

Fox, J.-P. (2010). Bayesian item response modeling. New York: Springer. doi:10.1007/978-1-4419-0742-4

Fox, J.-P., & Verhagen, A.-J. (2010). Random item effects modeling for cross-national survey data. In E. Davidov, P. Schmidt, & J. Billiet (Eds.), Cross-cultural Analysis: Methods and Applications (pp. 467-488), London: Routledge Academic.

Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269.

Glas, C. A. W. (2012). Estimating and testing the extended testlet model. LSAC Research Report Series, RR 12-03.

Green, S.B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.

Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. doi:10.1002/j.2333-8504.2009.tb02197.x

Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. doi:10.1080/00273171.2016.1142856

Ip, E. H., Molenberghs, G., Chen, S. H., Goegebeur, Y., & De Boeck, P. (2013). Functionally unidimensional item response models for multivariate binary data. Multivariate Behavioral Research, 48, 534-562.

Janssen, R., Tuerlinckx, F., Meulders, M., & de Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.

Jeon, M., & Rijmen, F. (2016). A modular approach for item response theory modeling with the R package flirt. Behavior Research Methods, 48(2), 742-755. doi:10.3758/s13428-015-0606-z

Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.

Loken, E. & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509-525.

McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. doi:10.1177/014662168200600402

McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. doi:10.1007/978-1-4757-2691-6_15

Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.

Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.

Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499.

Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.

Reckase, M. (2009). Multidimensional item response theory. New York: Springer. doi:10.1007/978-0-387-89976-3

Renard, D., Molenberghs, G., & Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Computational Statistics & Data Analysis, 44, 649-667.

Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.

Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.

Rossi, N., Wang, X. & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27, 291-317.

Rusch, T., Mair, P., & Hatzinger, R. (2013). Psychometrics with R: A Review of CRAN Packages for Item Response Theory. http://epub.wu.ac.at/4010/1/resrepIRThandbook.pdf

Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60(2), 281-304. doi:10.1007/BF02301417

Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.

Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. doi:10.1111/jedm.12054

Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. doi:10.1177/014662169602000403

Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. doi:10.1080/01621459.1988.10478613

Uenlue, A., & Yanagida, T. (2011). R you ready for R?: The CRAN psychometrics task view. British Journal of Mathematical and Statistical Psychology, 64(1), 182-186. doi:10.1348/000711010X519320

van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28, 369-386.

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.

Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. Cambridge: Cambridge University Press.

Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19, 369-375.

See Also

For estimating multidimensional models for polytomous item responses see the mirt, flirt (Jeon & Rijmen, 2016) and TAM packages.

For conditional maximum likelihood estimation see the eRm package.

For pairwise estimation likelihood methods (also known as composite likelihood methods) see pln or lavaan.

The estimation of cognitive diagnostic models is possible using the CDM package.

For the multidimensional latent class IRT model see the MultiLCIRT package which also allows the estimation IRT models with polytomous item responses.

Latent class analysis can be carried out with covLCA, poLCA, BayesLCA, randomLCA or lcmm packages.

Markov Chain Monte Carlo estimation for item response models can also be found in the MCMCpack package (see the MCMCirt functions therein).

See Rusch, Mair and Hatzinger (2013) and Uenlue and Yanagida (2011) for reviews of psychometrics packages in R.

Examples

##
##   |-----------------------------------------------------------------|
##   | sirt 0.40-4 (2013-11-26)                                        |
##   | Supplementary Item Response Theory                              |
##   | Maintainer: Alexander Robitzsch <a.robitzsch at bifie.at >      |
##   | https://sites.google.com/site/alexanderrobitzsch/software       |
##   |-----------------------------------------------------------------|
##
##                       _/              _/
##              _/_/_/      _/  _/_/  _/_/_/_/
##           _/_/      _/  _/_/        _/
##              _/_/  _/  _/          _/
##         _/_/_/    _/  _/            _/_/
##

[Package sirt version 4.1-15 Index]