rasch.va {sirt} | R Documentation |
Estimation of the Rasch Model with Variational Approximation
Description
This function estimates the Rasch model by the estimation method of variational approximation (Rijmen & Vomlel, 2008).
Usage
rasch.va(dat, globconv=0.001, maxiter=1000)
Arguments
dat |
Data frame with dichotomous item responses |
globconv |
Convergence criterion for item parameters |
maxiter |
Maximal number of iterations |
Value
A list with following entries:
sig |
Standard deviation of the trait |
item |
Data frame with item parameters |
xsi.ij |
Data frame with variational parameters |
mu.i |
Vector with individual means |
sigma2.i |
Vector with individual variances |
References
Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.
Examples
#############################################################################
# EXAMPLE 1: Rasch model
#############################################################################
set.seed(8706)
N <- 5000
I <- 20
dat <- sirt::sim.raschtype( stats::rnorm(N,sd=1.3), b=seq(-2,2,len=I) )
# estimation via variational approximation
mod1 <- sirt::rasch.va(dat)
# estimation via marginal maximum likelihood
mod2 <- sirt::rasch.mml2(dat)
# estmation via joint maximum likelihood
mod3 <- sirt::rasch.jml(dat)
# compare sigma
round( c( mod1$sig, mod2$sd.trait ), 3 )
## [1] 1.222 1.314
# compare b
round( cbind( mod1$item$b, mod2$item$b, mod3$item$itemdiff), 3 )
## [,1] [,2] [,3]
## [1,] -1.898 -1.967 -2.090
## [2,] -1.776 -1.841 -1.954
## [3,] -1.561 -1.618 -1.715
## [4,] -1.326 -1.375 -1.455
## [5,] -1.121 -1.163 -1.228
[Package sirt version 4.1-15 Index]