qmc.nodes {sirt} | R Documentation |
Calculation of Quasi Monte Carlo Integration Points
Description
This function calculates integration nodes based on the multivariate normal distribution with zero mean vector and identity covariance matrix. See Pan and Thompson (2007) and Gonzales et al. (2006) for details.
Usage
qmc.nodes(snodes, ndim)
Arguments
snodes |
Number of integration nodes |
ndim |
Number of dimensions |
Value
theta |
A matrix of integration points |
Note
This function uses the
sfsmisc::QUnif
function from
the sfsmisc package.
References
Gonzalez, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006). Numerical integration in logistic-normal models. Computational Statistics & Data Analysis, 51, 1535-1548.
Pan, J., & Thompson, R. (2007). Quasi-Monte Carlo estimation in generalized linear mixed models. Computational Statistics & Data Analysis, 51, 5765-5775.
Examples
## some toy examples
# 5 nodes on one dimension
qmc.nodes( snodes=5, ndim=1 )
## [,1]
## [1,] 0.0000000
## [2,] -0.3863753
## [3,] 0.8409238
## [4,] -0.8426682
## [5,] 0.3850568
# 7 nodes on two dimensions
qmc.nodes( snodes=7, ndim=2 )
## [,1] [,2]
## [1,] 0.00000000 -0.43072730
## [2,] -0.38637529 0.79736332
## [3,] 0.84092380 -1.73230641
## [4,] -0.84266815 -0.03840544
## [5,] 0.38505683 1.51466109
## [6,] -0.00122394 -0.86704605
## [7,] 1.35539115 0.33491073
[Package sirt version 4.1-15 Index]