prmse.subscores.scales {sirt} | R Documentation |
Proportional Reduction of Mean Squared Error (PRMSE) for Subscale Scores
Description
This function estimates the proportional reduction of mean squared error (PRMSE) according to Haberman (Haberman 2008; Haberman, Sinharay & Puhan, 2008; see Meijer et al. 2017 for an overview).
Usage
prmse.subscores.scales(data, subscale)
Arguments
data |
An |
subscale |
Vector of labels corresponding to subscales |
Value
Matrix with columns corresponding to subscales
The symbol X
denotes the subscale and Z
the whole scale (see also in the Examples section for the structure of
this matrix).
References
Haberman, S. J. (2008). When can subscores have value? Journal of Educational and Behavioral Statistics, 33, 204-229.
Haberman, S., Sinharay, S., & Puhan, G. (2008). Reporting subscores for institutions. British Journal of Mathematical and Statistical Psychology, 62, 79-95.
Meijer, R. R., Boeve, A. J., Tendeiro, J. N., Bosker, R. J., & Albers, C. J. (2017). The use of subscores in higher education: When is this useful?. Frontiers in Psychology | Educational Psychology, 8.
See Also
See the subscore package for computing subscores and the PRMSE measures,
especially subscore::CTTsub
.
Examples
#############################################################################
# EXAMPLE 1: PRMSE Reading data data.read
#############################################################################
data( data.read )
p1 <- sirt::prmse.subscores.scales(data=data.read,
subscale=substring( colnames(data.read), 1,1 ) )
print( p1, digits=3 )
## A B C
## N 328.000 328.000 328.000
## nX 4.000 4.000 4.000
## M.X 2.616 2.811 3.253
## Var.X 1.381 1.059 1.107
## SD.X 1.175 1.029 1.052
## alpha.X 0.545 0.381 0.640
## [...]
## nZ 12.000 12.000 12.000
## M.Z 8.680 8.680 8.680
## Var.Z 5.668 5.668 5.668
## SD.Z 2.381 2.381 2.381
## alpha.Z 0.677 0.677 0.677
## [...]
## cor.TX_Z 0.799 0.835 0.684
## rmse.X 0.585 0.500 0.505
## rmse.Z 0.522 0.350 0.614
## rmse.XZ 0.495 0.350 0.478
## prmse.X 0.545 0.381 0.640
## prmse.Z 0.638 0.697 0.468
## prmse.XZ 0.674 0.697 0.677
#-> Scales A and B do not have lower RMSE,
# but for scale C the RMSE is smaller than the RMSE of a
# prediction based on a whole scale.