personfit.stat {sirt} | R Documentation |
Person Fit Statistics for the Rasch Model
Description
This function collects some person fit statistics for the Rasch model (Karabatsos, 2003; Meijer & Sijtsma, 2001).
Usage
personfit.stat(dat, abil, b)
Arguments
dat |
An |
abil |
An ability estimate, e.g. the WLE |
b |
Estimated item difficulty |
Value
A data frame with following columns (see Meijer & Sijtsma 2001 for a review of different person fit statistics):
case |
Case index |
abil |
Ability estimate |
mean |
Person mean of correctly solved items |
caution |
Caution index |
depend |
Dependability index |
ECI1 |
|
ECI2 |
|
ECI3 |
|
ECI4 |
|
ECI5 |
|
ECI6 |
|
l0 |
Fit statistic |
lz |
Fit statistic |
outfit |
Person outfit statistic |
infit |
Person infit statistic |
rpbis |
Point biserial correlation of item responses
and item |
rpbis.itemdiff |
Point biserial correlation of item responses
and item difficulties |
U3 |
Fit statistic |
References
Karabatsos, G. (2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16, 277-298.
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.
See Also
See pcm.fit
for person fit in the partial credit model.
See the irtProb and PerFit packages for person fit statistics
and person response curves and functions included in other packages:
mirt::personfit
,
eRm::personfit
and
ltm::person.fit
.
Examples
#############################################################################
# EXAMPLE 1: Person fit Reading Data
#############################################################################
data(data.read)
dat <- data.read
# estimate Rasch model
mod <- sirt::rasch.mml2( dat )
# WLE
wle1 <- sirt::wle.rasch( dat,b=mod$item$b )$theta
b <- mod$item$b # item difficulty
# evaluate person fit
pf1 <- sirt::personfit.stat( dat=dat, abil=wle1, b=b)
## Not run:
# dimensional analysis of person fit statistics
x0 <- stats::na.omit(pf1[, -c(1:3) ] )
stats::factanal( x=x0, factors=2, rotation="promax" )
## Loadings:
## Factor1 Factor2
## caution 0.914
## depend 0.293 0.750
## ECI1 0.869 0.160
## ECI2 0.869 0.162
## ECI3 1.011
## ECI4 1.159 -0.269
## ECI5 1.012
## ECI6 0.879 0.130
## l0 0.409 -1.255
## lz -0.504 -0.529
## outfit 0.297 0.702
## infit 0.362 0.695
## rpbis -1.014
## rpbis.itemdiff 1.032
## U3 0.735 0.309
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.000 -0.727
## Factor2 -0.727 1.000
##
## End(Not run)