np.dich {sirt} | R Documentation |
Nonparametric Estimation of Item Response Functions
Description
This function does nonparametric item response function estimation (Ramsay, 1991).
Usage
np.dich(dat, theta, thetagrid, progress=FALSE, bwscale=1.1,
method="normal")
Arguments
dat |
An |
theta |
Estimated theta values, for example weighted likelihood
estimates from |
thetagrid |
A vector of theta values where the nonparametric item response functions shall be evaluated. |
progress |
Display progress? |
bwscale |
The bandwidth parameter |
method |
The default |
Value
A list with following entries
dat |
Original data frame |
thetagrid |
Vector of theta values at which the item response functions are evaluated |
theta |
Used theta values as person parameter estimates |
estimate |
Estimated item response functions |
... |
References
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.
Examples
#############################################################################
# EXAMPLE 1: Reading dataset
#############################################################################
data( data.read )
dat <- data.read
# estimate Rasch model
mod <- sirt::rasch.mml2( dat )
# WLE estimation
wle1 <- sirt::wle.rasch( dat=dat, b=mod$item$b )$theta
# nonparametric function estimation
np1 <- sirt::np.dich( dat=dat, theta=wle1, thetagrid=seq(-2.5, 2.5, len=100 ) )
print( str(np1))
# plot nonparametric item response curves
plot( np1, b=mod$item$b )