mcmc.2pnoh {sirt} | R Documentation |
MCMC Estimation of the Hierarchical IRT Model for Criterion-Referenced Measurement
Description
This function estimates the hierarchical IRT model for criterion-referenced measurement which is based on a two-parameter normal ogive response function (Janssen, Tuerlinckx, Meulders & de Boeck, 2000).
Usage
mcmc.2pnoh(dat, itemgroups, prob.mastery=c(.5,.8), weights=NULL,
burnin=500, iter=1000, N.sampvalues=1000,
progress.iter=50, prior.variance=c(1,1), save.theta=FALSE)
Arguments
dat |
Data frame with dichotomous item responses |
itemgroups |
Vector with characters or integers which define the criterion to which an item is associated. |
prob.mastery |
Probability levels which define nonmastery, transition and mastery stage (see Details) |
weights |
An optional vector with student sample weights |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
N.sampvalues |
Maximum number of sampled values to save |
progress.iter |
Display progress every |
prior.variance |
Scale parameter of the inverse gamma distribution
for the |
save.theta |
Should theta values be saved? |
Details
The hierarchical IRT model for criterion-referenced measurement
(Janssen et al., 2000) assumes that every item intends
to measure a criterion
. The item response function is defined as
Item parameters are hierarchically modeled, i.e.
In the mcmc.list
output object, also the derived parameters
and
are
calculated.
Mastery and nonmastery probabilities are based on a reference item
of criterion
and a response function
With known item parameters and person parameters, response probabilities of
criterion are calculated. If a response probability of criterion
is larger than
prob.mastery[2]
, then a student is defined as a
master. If this probability is smaller than prob.mastery[1]
, then
a student is a nonmaster. In all other cases, students are in a transition
stage.
In the mcmcobj
output object, the parameters d[i]
are defined by
while
tau[k]
are defined by
.
Value
A list of class mcmc.sirt
with following entries:
mcmcobj |
Object of class |
summary.mcmcobj |
Summary of the |
burnin |
Number of burnin iterations |
iter |
Total number of iterations |
alpha.chain |
Sampled values of |
beta.chain |
Sampled values of |
xi.chain |
Sampled values of |
omega.chain |
Sampled values of |
sigma.chain |
Sampled values of |
nu.chain |
Sampled values of |
theta.chain |
Sampled values of |
deviance.chain |
Sampled values of Deviance values |
EAP.rel |
EAP reliability |
person |
Data frame with EAP person parameter estimates for
|
dat |
Used data frame |
weights |
Used student weights |
... |
Further values |
References
Janssen, R., Tuerlinckx, F., Meulders, M., & De Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.
See Also
S3 methods: summary.mcmc.sirt
, plot.mcmc.sirt
The two-parameter normal ogive model can be estimated with
mcmc.2pno
.
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Simulated data according to Janssen et al. (2000, Table 2)
#############################################################################
N <- 1000
Ik <- c(4,6,8,5,9,6,8,6,5)
xi.k <- c( -.89, -1.13, -1.23, .06, -1.41, -.66, -1.09, .57, -2.44)
omega.k <- c(.98, .91, .76, .74, .71, .80, .79, .82, .54)
# select 4 attributes
K <- 4
Ik <- Ik[1:K] ; xi.k <- xi.k[1:K] ; omega.k <- omega.k[1:K]
sig2 <- 3.02
nu2 <- .09
I <- sum(Ik)
b <- rep( xi.k, Ik ) + stats::rnorm(I, sd=sqrt(sig2) )
a <- rep( omega.k, Ik ) + stats::rnorm(I, sd=sqrt(nu2) )
theta1 <- stats::rnorm(N)
t1 <- rep(1,N)
p1 <- stats::pnorm( outer(t1,a) * ( theta1 - outer(t1,b) ) )
dat <- 1 * ( p1 > stats::runif(N*I) )
itemgroups <- rep( paste0("A", 1:K ), Ik )
# estimate model
mod <- sirt::mcmc.2pnoh(dat, itemgroups, burnin=200, iter=1000 )
# summary
summary(mod)
# plot
plot(mod$mcmcobj, ask=TRUE)
# write coda files
mcmclist2coda( mod$mcmcobj, name="simul_2pnoh" )
## End(Not run)