| eigenvalues.manymatrices {sirt} | R Documentation | 
Computation of Eigenvalues of Many Symmetric Matrices
Description
This function computes the eigenvalue decomposition of N
symmetric positive definite matrices. The eigenvalues are computed
by the Rayleigh quotient method (Lange, 2010, p. 120). In addition,
the inverse matrix can be calculated.
Usage
eigenvalues.manymatrices(Sigma.all, itermax=10, maxconv=0.001,
    inverse=FALSE )
Arguments
Sigma.all | 
 An   | 
itermax | 
 Maximum number of iterations  | 
maxconv | 
 Convergence criterion for convergence of eigenvectors  | 
inverse | 
 A logical which indicates if the inverse matrix shall be calculated  | 
Value
A list with following entries
lambda | 
 Matrix with eigenvalues  | 
U | 
 An   | 
logdet | 
 Vector of logarithm of determinants  | 
det | 
 Vector of determinants  | 
Sigma.inv | 
 Inverse matrix if   | 
References
Lange, K. (2010). Numerical Analysis for Statisticians. New York: Springer.
Examples
# define matrices
Sigma <- diag(1,3)
Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 )
Sigma1 <- Sigma
Sigma <- diag(1,3)
Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.2,.1,.99 )
Sigma2 <- Sigma
# collect matrices in a "super-matrix"
Sigma.all <- rbind( matrix( Sigma1, nrow=1, byrow=TRUE),
                matrix( Sigma2, nrow=1, byrow=TRUE) )
Sigma.all <- Sigma.all[ c(1,1,2,2,1 ), ]
# eigenvalue decomposition
m1 <- sirt::eigenvalues.manymatrices( Sigma.all )
m1
# eigenvalue decomposition for Sigma1
s1 <- svd(Sigma1)
s1
[Package sirt version 4.1-15 Index]